

	
			
			
			[image:]	

	
				
			
				
			
				
	
		
			
	
	Part Number	Hot Search :
			

						0N1TR			UMG5N			OZ812			TE2395			JE210			5962F			A1764			A1764			

			
	
	Product Description

			
	
	Full Text Search

				

		
		
		

			

			
				 	
				To Download
				HT46R069B12 Datasheet File

	
				
				If you can't view the
				Datasheet, Please click here to try to view without PDF Reader .	
				

[image:]

			
				
					

				　

			

	

	

		

			
				

				

			

		

		

		 Datasheet File OCR Text:

		 enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b revision: v1.10 date: ?a? 0?? ?01? ?a? 0?? ?01?

 rev. 1.10 ? ?a? 0?? ?01? rev. 1.10 3 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu table of contents eates cpu features ... 6 peripheral features ... 6 general description ... 7 selection table ... 7 block diagram .. 7 pin assignment .. 8 pin description .. 10 absolute ?aximum ratings .. 1? d.c. characteristics ... 1? a.c. characteristics ... 14 adc characteristics .. 15 dac electrical characteristics ... 15 power-on reset characteristics ... 15 s?stem architecture .. 16 clocking and pipelining ... 16 program counter ... 17 stack ... 18 arithmetic and logic unit C alu ... 18 program ?emor? ... 19 structure .. 19 special vectors ... ?0 look-up table .. ?0 table program example .. ?1 data ?emor? .. ?? structure .. ?? special purpose data ?emor? ... ?3 special function registers ... ?4 indirect addressing registers C iar0 ? iar1 ... ?4 ?emor? pointers C ?p0? ?p1 .. ?4 accumulator C acc ... ?7 program counter low register C pcl .. ?7 bank pointer C bp ... ?7 status register C status .. ?8 input/output ports and control registers ... ?9 s?stem control registers C ctrl0? ctrl1? ctrl? ... 30 wake-up function register C pawk ... 3? pull-high registers C papu ? pbpu? pcpu? pdpu? pepu? pfpu 3? software co? register C sco?c ... 3?

 rev. 1.10 ? ?a? 0?? ?01? rev. 1.10 3 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu oscillator .. 32 s?stem oscillator overview .. 3? external cr?stal/resonator oscillator C hxt .. 33 external rc oscillator C erc ... 33 internal rc oscillator C hirc ... 34 external 3?768hz cr?stal oscillator C lxt ... 34 lxt oscillator low power function .. 35 internal low speed oscillator C lirc ... 35 operating modes ... 36 ? ode t ?pes and selection .. 36 ?ode switching ... 37 standb? current considerations ... 37 wake-up .. 38 watchdog timer operation ... 39 reset and initialisation .. 40 reset functions .. 41 reset initial conditions ... 43 input/output ports ... 46 pull-high resistors .. 46 port a wake-up ... 46 i/o port control registers ... 48 pin-shared functions .. 49 pin remapping confguration ... 50 i/o pin structures .. 50 programming considerations .. 5? timer/event counters ... 52 confguring the timer/event counter input clock source .. 5? timer registers C t ?r0? t?r1? t?r?l? t?r?h ... 53 timer control registers C t ?r0c? t?r1c? t?r?c ... 53 timer ?ode ... 57 event counter ?ode ... 57 pulse width capture ?ode ... 58 prescaler ... 59 pfd function .. 59 i/o interfacing .. 60 programming considerations .. 60 timer program example ... 61 time base ... 61 pulse width modulator .. 62 pw? operation ... 63 6+? pw? ?ode .. 63 7+1 pw? ?ode .. 64 pw? output control ... 65

 rev. 1.10 4 ?a? 0?? ?01? rev. 1.10 5 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu analog to digital converter .. 66 a/d overview .. 66 a/d converter data registers C adrl ? adrh ... 66 a/d converter control registers C adcr ? acsr? ancsr1? ancsr0 66 a/d input pins ... 7? summar? of a/d conversion steps ... 7? programming considerations .. 73 a/d transfer function ... 73 a/d programming example ... 75 interrupts .. 77 interrupt register .. 77 interrupt operation .. 79 interrupt priorit? ... 80 external interrupt ... 81 timer/event counter interrupt ... 81 ?ulti-function interrupt .. 81 programming considerations .. 8? lcd scom function ... 83 lcd operation ... 83 lcd bias control .. 84 serial interface module C sim ... 85 spi interface ... 85 spi registers .. 87 spi communication ... 90 i ? c interface .. 9? i ? c registers ... 93 i ? c bus communication .. 97 i ? c bus start signal ... 98 slave address ... 98 i ? c bus read/write signal .. 99 i ? c bus slave address acknowledge signal ... 99 i ? c bus data and acknowledge signal ... 99 peripheral clock output .. 101 peripheral clock operation ... 101 serial interface C spia ... 102 spia interface operation .. 10? spia registers ... 104 spia communication .. 106 spia bus enable/disable .. 108 spia operation ... 108 low voltage detector C lvd .. 110 lvd register .. 110 lvd operation .. 110

 rev. 1.10 4 ?a? 0?? ?01? rev. 1.10 5 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu confguration options .. 111 application circuit .. 112 instruction set ... 113 introduction .. 113 instruction timing ... 113 ? oving and transferring data .. 113 arithmetic operations ... 113 logical and rotate operations ... 114 branches and control transfer .. 114 bit operations .. 114 table read operations .. 114 other operations .. 114 instruction set summar? .. 115 instruction defnition .. 117 package information ... 126 ? 8-pin skdip (300mil) outline dimensions .. 1?6 ? 8-pin sop (300mil) outline dimensions ... 1?7 ? 8-pin ssop (150mil) outline dimensions ... 1?8 44-pin qfp (10mmx10mm) outline dimensions .. 1?9 5? -pin qfp (14mmx14mm) outline dimensions .. 130 64-pin lqfp (7mmx7mm) outline dimensions .. 131 reel dimensions ... 13? carrier tape dimensions ... 133

 rev. 1.10 6 ?a? 0?? ?01? rev. 1.10 7 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu features cpu features ?	 operating	voltage: 	 f sys =	4mhz:	2.2v~5.5v 	 f sys =8mhz:	3.0v~5.5v 	 f sys =12mhz:	4.5v~5.5v ?	 up	to	0.33s	instruction	cycle	with	12mhz	system	clock	at	 v dd =	5v ?	 idle/sleep	mode	and	wake-up	functions	to	reduce	power	consumption ?	 oscillator	types: 	 external	high	frequency	crystal	C	hxt 	 external	rc	C	erc 	 internal	rc	C	hirc 	 external	low	frequency	crystal	C	lxt ?	 four	operational	modes:	normal,	 slow,	idle,	sleep ?	 fully	integrated	internal	4mhz,	8mhz	and	12mhz	oscillator	requires	no	external	components ?	 watchdog 	 timer 	function ?	 lirc	oscillator	function	for	watchdog	timer ?	 all	instructions	executed	in	one	or	two	instruction	cycles ?	 table 	read	instructions ?	 63	powerful	instructions ?	 up	to	8-level	subroutine	nesting ?	 bit	manipulation	instruction ?	 low	voltage	reset	function ?	 low	voltage	detect	function ?	 wide 	range	of	available	package	types peripheral features ?	 up	to	62	bidirectional	i/o	lines ?	 up	to	16	channel	12-bit	 adc ?	 up	to	4	channel	8-bit	pwm ?	 single	 channel	12-bit	dac ?	 serial	interfaces	module	 with	dual	 spi	 and	 i 2 c 	interfaces ?	 single	 serial 	spi 	interface ?	 software	controlled	4-scom	lines	lcd	com	driver	with	1/2	bias ?	 external	interrupt	input	shared	with	an	i/o	line ?	 t wo 	8-bit	programmable	 timer/event 	counter	with	overfow	interrupt	and	prescaler ?	 single	16-bit	programmable	 timer/event 	counter	with	overfow	interrupt ?	 time-base 	function ?	 programmable	frequency	divider	C	pfd

 rev. 1.10 6 ?a? 0?? ?01? rev. 1.10 7 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu general description the	enhanced	 a/d	mcus	are	a	series	of	8-bit	high	performance,	risc	architecture	microcontrollers 	 specifcally	 designed	 for	 a	 wide	 range	 of	 applications.	 the	 usual	 holtek	 microcontroller	 features	 of	 low	 power	 consumption,	 i/o	 fexibility, 	 timer	 functions,	 oscillator	 options,	 power	 down	 and	 wake- up	 functions, 	 watchdog	 timer	 and	 low	 voltage	 reset,	 combine	 to	 provide	 devices	 with	 a	 huge	 range	 of	 functional	 options	 while	 still	 maintaining	 a	 high	 level	 of	 cost	 effectiveness. 	 the	 fully	 integrated	 system 	 oscillator 	 hirc, 	 which 	 requires 	 no 	 external 	 components 	 and 	 which 	 has 	 three 	 frequency 	 selections,	 opens	 up	 a	 huge	 range	 of	 new	 application	 possibilities	 for	 these	 devices,	 some	 of	 which	 may	include	industrial	control,	consumer	products,	household	appliances	subsystem	controllers,	etc. selection table part no. program memory data memory i/o 8-bit timer 16-bit timer time base hirc (mhz) rtc (lxt) lcd scom ht46r068b 16kx16 51?x8 50 ? 1 1 4/8/1? 4 ht46r069b 3?kx16 10?4x8 6? ? 1 1 4/8/1? 4 part no. a/d pwm d/a interface pfd stack package ht46r068b 1?-bitx16 8-bitx4 1?-bitx1 spi/i ? c? spi 8 ?8skdip/sop/ssop 44/5?qfp ht46r069b 1?-bitx16 8-bitx4 1?-bitx1 spi/i ? c? spi 8 44/5?qfp 64lqfp note:	"*"	the	oscillator	is	connected	to	the	xt1/xt2	pins	with	 tinypower tm 	design. block diagram the	following	block	diagram	illustrates	the	main	functional	blocks.

 	
 	
�
? 	

 rev. 1.10 8 ?a? 0?? ?01? rev. 1.10 9 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu pin assignment pc 1 / an 5 pe 0 / an 8 pe 1 / an 9 pe ? / an 10 pe 3 / an 11 pe 4 / an 1? pe 5 / an 13 pe 6 / an 14 pe 7 / an 15 pg 0 pg 1 pd 0 / tc ? pd 1 / pw? 3 pc 4 / xt ? pa 7 / res pc 3 / pw? 1 pc ? / pw? ? pd 7 / sdo pd 6 / sdi / sda pd 5 / sck / scl pd 4 / scs pd 3 / pclk pd ? pf 7 pf 6 pf 5 p f 4 p f 3 p f ? p f 1 / s d i a p f 0 / s d o a p b 7 / s c k a p b 6 / s c s a p b 5 p b 4 p b 3 / s c o ? 3 p b ? / s c o ? ? p b 1 / s c o ? 1 p b 0 / s c o ? 0 p c 5 / x t 1 p a 6 / o s c 1 p a 5 / o s c ? v d d v s s p a 4 / p w ? 0 / t c 1 / a u d p a 3 / i n t / a n 3 p a ? / t c 0 / a n ? / v r e f p a 1 / p f d / a n 1 p a 0 / a n 0 p c 6 / a n 6 p c 7 / a n 7 p c 0 / a n 4 1 ? 3 4 5 6 7 8 9 10 11 1? 13 14 15 16 17 18 19 ?0 ?1 ?? 34 35 36 37 38 39 48 49 50 51 5? ?3 ?4 ?5 ?6 ?7 ?8 ?9 30 31 3? 33 40 41 4? 43 44 45 46 47 ht 46 r 068 b 52 qfp - a 1 ? 3 4 5 6 7 8 9 10 11 1? 13 14 15 16 17 18 19 ?0 ?1 ?? ?3 ?4 ?5 ?6 ?7 ?8 ?9 30 31 3? 33 34 35 36 37 38 39 40 41 4? 43 44 p c 5 / x t 1 p a 6 / o s c 1 p a 5 / o s c ? v d d v s s p a 4 / p w ? 0 / t c 1 / a u d p a 3 / i n t / a n 3 p a ? / t c 0 / a n ? / v r e f p a 1 / p f d / a n 1 p a 0 / a n 0 p c 6 / a n 6 pc 7 / an 7 pc 0 / an 4 pc 1 / an 5 pe 0 / an 8 pe 1 / an 9 pe ? / an 10 pe 3 / an 11 pe 4 / an 1? pe 5 / an 13 pe 6 / an 14 pe 7 / an 15 pc 4 / xt ? pa 7 / res pc 3 / pw? 1 pc ? / pw? ? pd 7 / sdo pd 6 / sdi / sda pd 5 / sck / scl pd 4 / scs pd 3 / pclk pd ? pf 1 / sdia p f 0 / s d o a p b 7 / s c k a p b 6 / s c s a p b 5 p b 4 p b 3 / s c o ? 3 p b ? / s c o ? ? p b 1 / s c o ? 1 p b 0 / s c o ? 0 p d 1 / p w ? 3 p d 0 / t c ? ht 46 r 068 b 44 qfp - a vss vdd pa 5 / osc ? pa 6 / osc 1 pc 5 / xt 1 pc 4 / xt ? pa 7 / res pc 3 / pw? 1 pc ? / pw? ? pd 3 / pck pd ? pb 5 pb 4 pb 3 / sco? 3 ?8 ?7 ?6 ?5 ?4 ?3 ?? ?1 ?0 19 18 17 16 15 1 ? 3 4 5 6 7 8 9 10 11 1? 13 14 pa 4 / pw? 0 / tc 1 / aud pa 3 / int pa ? / tc 0 pa 1 / pfd / an 1 pa 0 pc 6 pc 7 pc 0 pc 1 pd 0 / tc ? pd 1 / pw? 3 pb 0 / sco? 0 pb 1 / sco? 1 pb ? / sco? ? ht 46 r 068 b 28 skdip - a / ssop - a / sop - a

 rev. 1.10 8 ?a? 0?? ?01? rev. 1.10 9 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu 1 ? 3 4 5 6 7 8 9 10 11 1? 13 14 15 16 17 18 19 ?0 ?1 ?? ?3 ?4 ?5 ?6 ?7 ?8 ?9 30 31 3? 33 34 35 36 37 38 39 40 41 4? 43 44 p c 5 / x t 1 p a 6 / o s c 1 p a 5 / o s c ? v d d v s s p a 4 / p w ? 0 / t c 1 / a u d p a 3 / i n t / a n 3 p a ? / t c 0 / a n ? / v r e f p a 1 / p f d / a n 1 p a 0 / a n 0 p c 6 / a n 6 pc 7 / an 7 pc 0 / an 4 pc 1 / an 5 pe 0 / an 8 pe 1 / an 9 pe ? / an 10 pe 3 / an 11 pe 4 / an 1? pe 5 / an 13 pe 6 / an 14 pe 7 / an 15 pc 4 / xt ? pa 7 / res pc 3 / pw? 1 pc ? / pw? ? pd 7 / sdo pd 6 / sdi / sda pd 5 / sck / scl pd 4 / scs pd 3 / pclk pd ? pf 1 / sdia p f 0 / s d o a p b 7 / s c k a p b 6 / s c s a p b 5 p b 4 p b 3 / s c o ? 3 p b ? / s c o ? ? p b 1 / s c o ? 1 p b 0 / s c o ? 0 p d 1 / p w ? 3 p d 0 / t c ? ht 46 r 069 b 44 qfp - a pc 1 / an 5 pe 0 / an 8 pe 1 / an 9 pe ? / an 10 pe 3 / an 11 pe 4 / an 1? pe 5 / an 13 pe 6 / an 14 pe 7 / an 15 pg 0 pg 1 pd 0 / tc ? pd 1 / pw? 3 pc 4 / xt ? pa 7 / res pc 3 / pw? 1 pc ? / pw? ? pd 7 / sdo pd 6 / sdi / sda pd 5 / sck / scl pd 4 / scs pd 3 / pclk pd ? pf 7 pf 6 pf 5 p f 4 p f 3 p f ? p f 1 / s d i a p f 0 / s d o a p b 7 / s c k a p b 6 / s c s a p b 5 p b 4 p b 3 / s c o ? 3 p b ? / s c o ? ? p b 1 / s c o ? 1 p b 0 / s c o ? 0 p c 5 / x t 1 p a 6 / o s c 1 p a 5 / o s c ? v d d v s s p a 4 / p w ? 0 / t c 1 / a u d p a 3 / i n t / a n 3 p a ? / t c 0 / a n ? / v r e f p a 1 / p f d / a n 1 p a 0 / a n 0 p c 6 / a n 6 p c 7 / a n 7 p c 0 / a n 4 1 ? 3 4 5 6 7 8 9 10 11 1? 13 14 15 16 17 18 19 ?0 ?1 ?? 34 35 36 37 38 39 48 49 50 51 5? ?3 ?4 ?5 ?6 ?7 ?8 ?9 30 31 3? 33 40 41 4? 43 44 45 46 47 ht 46 r 069 b 52 qfp - a pc 1 / an 5 pe 0 / an 8 pe 1 / an 9 pe ? / an 10 pe 3 / an 11 pe 4 / an 1? pe 5 / an 13 pe 6 / an 14 pe 7 / an 15 pg 0 pg 1 pg ? pg 3 pg 4 pg 5 pg 6 pc ? / pw? ? pd 7 / sdo pd 6 / sdi / sda pd 5 / sck / scl pd 4 / scs pd 3 / pclk pd ? ph 5 ph 4 ph 3 ph ? ph 1 ph 0 pf 7 pf 6 pf 5 p f 4 p f 3 p f ? p f 1 / s d i a p f 0 / s d o a p b 7 / s c k a p b 6 / s c s a p b 5 p b 4 p b 3 / s c o ? 3 p b ? / s c o ? ? p b 1 / s c o ? 1 p b 0 / s c o ? 0 p d 1 / p w ? 3 p d 0 / t c ? p g 7 p c 3 / p w ? 1 p a 7 / r e s p c 4 / x t ? p c 5 / x t 1 p a 6 / o s c 1 p a 5 / o s c ? v d d v s s p a 4 / p w ? 0 / t c 1 / a u d p a 3 / i n t / a n 3 p a ? / t c 0 / a n ? / v r e f p a 1 / p f d / a n 1 p a 0 / a n 0 p c 6 / a n 6 p c 7 / a n 7 p c 0 / a n 4 ht 46 r 069 b 64 qfp - a 1 ? 3 4 5 6 7 8 9 10 11 1? 13 ?0 ?1 ?? ?3 ?4 ?5 ?6 ?7 ?8 60 61 6? 63 64 ?9 30 31 3? 5? 53 54 55 56 57 58 59 14 15 16 43 44 45 46 47 48 36 37 38 39 40 41 4? 33 34 35 17 18 19 5? 53 54

 rev. 1.10 10 ?a? 0?? ?01? rev. 1.10 11 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu pin description pin name function opt i/t o/t descriptions pa0/an0 pa0 papu pawk st c?os general purpose i/o. register enabled pull-up and wake-up. an0 ancsr0 an a/d channel 0 pa1/pfd/an1 pa1 papu pawk st c?os general purpose i/o. register enabled pull-up and wake-up. pfd ctrl0 c?os pfd output an1 ancsr0 an a/d channel 1 pa ?/tc0/an?/vref pa ? papu pawk st c?os general purpose i/o. register enabled pull-up and wake-up. tc0 st external timer 0 clock input an? ancsr0 an a/d channel ? vref acsr an adc reference input pa3/intb/an3 pa3 papu pawk st c?os general purpose i/o. register enabled pull-up and wake-up. intb st external interrupt input an3 ancsr0 an a/d channel 3 pa4/pw ?0/tc1/aud pa4 papu pawk st c?os general purpose i/o. register enabled pull-up and wake-up. pw?0 ctrl0 c?os pw? output tc1 st external timer 1 clock input aud an dac output pa5/osc ? pa5 papu pawk st c?os general purpose i/o. register enabled pull-up and wake-up. osc? co osc oscillator pin pa6/osc1 pa6 papu pawk st c?os general purpose i/o. register enabled pull-up and wake-up. osc1 co osc oscillator pin pa7/ res pa7 pawk st n?os general purpose i/o. register enabled wake-up. res co st reset input pb0/sco?0 pb0 pbpu st c?os general purpose i/o. register enabled pull-up sco?0 sco?c sco? software controlled 1/? bias lcd co? pb1/sco?1 pb1 pbpu st c?os general purpose i/o. register enabled pull-up sco?1 sco?c sco? software controlled 1/? bias lcd co? pb?/sco?? pb? pbpu st c?os general purpose i/o. register enabled pull-up sco?? sco?c sco? software controlled 1/? bias lcd co? pb3/sco?3 pb3 pbpu st c?os general purpose i/o. register enabled pull-up sco?3 sco?c sco? software controlled 1/? bias lcd co? pb4?pb5 pb4?pb5 pbpu st c?os general purpose i/o. register enabled pull-up pb6/ scsa pb6 pbpu st c?os general purpose i/o. register enabled pull-up scsa st spi slave select pb7/scka pb7 pbpu st c?os general purpose i/o. register enabled pull-up scka st c?os spi serial clock pc0/an4 pc0 pcpu st c?os general purpose i/o. register enabled pull-up. an4 ancsr0 an a/d channel 4 pc1/an5 pc1 pcpu st c?os general purpose i/o. register enabled pull-up. an5 ancsr0 an a/d channel 5 pc?/pw?? pc? pcpu st c?os general purpose i/o. register enabled pull-up. pw?? ctrl? c?os pw? output pc3/pw?1 pc3 pcpu st c?os general purpose i/o. register enabled pull-up. pw?1 ctrl0 c?os pw? output pc4/xt? pc4 pcpu st c?os general purpose i/o. register enabled pull-up. xt? co lxt low frequenc? cr?stal pin pc5/xt1 pc5 pcpu st c?os general purpose i/o. register enabled pull-up. xt1 co lxt low frequenc? cr?stal pin

 rev. 1.10 10 ?a? 0?? ?01? rev. 1.10 11 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu pin name function opt i/t o/t descriptions pc6/an6 pc6 pcpu st c?os general purpose i/o. register enabled pull-up . an6 ancsr0 an a/d channel 6 pc7/an7 pc7 pcpu st c?os general purpose i/o. register enabled pull-up. an7 ancsr0 an a/d channel 7 pd0/tc? pd0 pdpu st c?os general purpose i/o. register enabled pull-up . tc? st external timer ? clock input pd1/pw?3 pd1 pdpu st c?os general purpose i/o. register enabled pull-up . pw?3 ctrl? c?os pw? output pd? pd? pdpu st c?os general purpose i/o. register enabled pull-up . pd3/pclk pd3 pdpu st c?os general purpose i/o. register enabled pull-up . pclk c?os peripheral clock output pd4/ scs pd4 pdpu st c?os general purpose i/o. register enabled pull-up . scs st c?os spi slave select pd5/sck/scl pd5 pdpu st c?os general purpose i/o. register enabled pull-up . sck st c?os spi serial clock scl st n?os i ? c clock pd6/sdi/sda pd6 pdpu st c?os general purpose i/o. register enabled pull-up . sdi st spi data input sda st n?os i ? c data pd7/sdo pd7 pdpu st c?os general purpose i/o. register enabled pull-up . sdo c?os spi data output pe0/an8 pe0 pepu st c?os general purpose i/o. register enabled pull-up . an8 ancsr1 an a/d channel 8 pe1/an9 pe1 pepu st c?os general purpose i/o. register enabled pull-up . an9 ancsr1 an a/d channel 9 pe?/an10 pe? pepu st c?os general purpose i/o. register enabled pull-up . an10 ancsr1 an a/d channel 10 pe3/an11 pe3 pepu st c?os general purpose i/o. register enabled pull-up . an11 ancsr1 an a/d channel 11 pe4/an1? pe4 pepu st c?os general purpose i/o. register enabled pull-up . an1? ancsr1 an a/d channel 1? pe5/an13 pe5 pepu st c?os general purpose i/o. register enabled pull-up . an13 ancsr1 an a/d channel 13 pe6/an14 pe6 pepu st c?os general purpose i/o. register enabled pull-up . an14 ancsr1 an a/d channel 14 pe7/an15 pe7 pepu st c?os general purpose i/o. register enabled pull-up . an15 ancsr1 an a/d channel 15 pf0/sdoa pf0 pfpu st c?os general purpose i/o. register enabled pull-up . sdoa c?os spi data output pf1/sdia pf1 pfpu st c?os general purpose i/o. register enabled pull-up . sdia st spi data input pf?~pf7 pfn pfpu st c?os general purpose i/o. register enabled pull-up . pg0~pg7 pgn pgpu st c?os general purpose i/o. register enabled pull-up . ph0~ph5 phn phpu st c?os general purpose i/o. register enabled pull-up . vdd vdd pwr power suppl? vss vss pwr ground note:	 i/t:	input	type;	 o/t:	output	type 	 opt: 	optional	by	confguration	option	(co)	or	register	option 	 pwr:	power;	co:	confguration	option 	 st: 	schmitt	 trigger 	input;	cmos:	cmos	output; 	 an:	 analog	input	or	output 	 scom:	software	controlled	lcd	com 	 hxt: 	high	frequency	crystal	oscillator 	 lxt: 	low	frequency	crystal	oscillator

 rev. 1.10 1? ?a? 0?? ?01? rev. 1.10 13 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu absolute maximum ratings supply	 voltage 	 	 .. v ss -0.3v 	to	 v ss +6.0v 	 input	 voltage 	 	 .. v ss -0.3v 	to	 v dd +0.3v 	 i ol 	 total .. 100ma 	 total 	power	dissipation	 	 .. 500mw 	 storage	 temperature 	 	 .. -50 c	to	125c 	 operating	 temperature 	 	 .. -40 c	to	85 c 	 i oh 	 total .. -100ma note: 	 these 	 are 	 stress 	 ratings 	 only. 	 stresses 	 exceeding 	 the 	 range 	 specified 	 under 	 absolute 	 maximum	 ratings	 may	 cause 	 substantial	 damage	 to	 the	 device.	 functional	 operation	 of 	 this	 device	 at	 other	 conditions	 beyond	 those	 listed	 in	 the	 specification	 is	 not	 implied	 and 	 prolonged	exposure	to	extreme	conditions	may	 affect	device	 reliability. d.c. characteristics ta= ?5c symbol parameter test conditions min. typ. max. unit v dd conditions v dd operating voltage f sys =4?hz ?.? 5.5 v f sys =8?hz 3.0 5.5 v f sys =1??hz 4.5 5.5 v i dd1 operating current (hxt ? hirc? erc) 3v no load? f sys =4?hz 0.8 1.? ma 5v 1.5 ?.?5 ma i dd? operating current (hxt ? hirc? erc) 3v no load? f sys =8?hz 1.4 ?.1 ma 5v ?.8 4.? ma i dd3 operating current (hxt ? hirc? erc) 5v no load? f sys =1??hz 4 6 ma i dd4 operating current (hirc + lxt ? slow ?ode) 3v no load? f sys =3?768hz (lxt on osc1/osc ?? lvr disabled ? lxtlp=1) 5 10 5v 1? ?4 3v no load? f sys =3?768hz (lxt on xt1/xt ?? lvr disabled ? lxtlp=1) 5 10 5v 10 ?0 i stb1 standb? current (lirc on? lxt off) 3v no load? s? stem halt 5 5v 10 i stb? standb? current (lirc off ? lxt off) 3v no load? s? stem halt 1 5v ? i stb3 standb? current (lirc off ? lxt on? lxtlp=1) 3v no load? s? stem halt (lxt on osc1/osc ?) 5 5v 10 3v no load? s? stem halt (lxt on xt1/xt ?) 3 5v 5 v il1 input low voltage for i/o ? tcn and int 0 0.3v dd v v ih1 input high voltage for i/o ? tcn and int 0.7v dd v dd v v il? input low voltage (res) 0 0.4v dd v v ih? input high voltage (res) 0.9v dd v dd v v lvr1 low voltage reset 1 v lvr =4.?v 3.98 4.? 4.4? v v lvr ? low voltage reset ? v lvr =3.15v ?.98 3.15 3.3? v v lvr3 low voltage reset 3 v lvr =?.1v 1.98 ?.1 ?.?? v

 rev. 1.10 1? ?a? 0?? ?01? rev. 1.10 13 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu symbol parameter test conditions min. typ. max. unit v dd conditions v lvd1 low voltage detector voltage 1 v lvd = 4.4 v 4.1? 4.4 4.70 v v lvd ? low voltage detector voltage 	 ? v lvd = 3.3 v 3.1? 3.3 3.50 v v lvd ? low voltage detector voltage 	 3 v lvd = 2.2 v ?.08 ?.? ?.3? v i ol1 i/o port sink current (pa ? pb? pc? pd? pe? pf ? pg? ph) 3v v ol =0.1v dd 4 8 ma 5v 10 ?0 ma i oh i/o port source current 3v v oh =0.9v dd -? -4 ma 5v -5 -10 ma i ol? pa7 sink current 5v v ol =0.1v dd ? 3 ma r ph pull-high resistance 3v ?0 60 100 n 5v 10 30 50 n i sco? sco? operating current 5v sco?c? isel[1:0]=00 17.5 ?5.0 3?.5 sco?c? isel[1:0]=01 35 50 65 sco?c? isel[1:0]=10 70 100 130 sco?c? isel[1:0]=11 140 ?00 ?60 v sco? v dd /? voltage for lcd co? 5v no load 0.475 0.500 0.5?5 v dd note:	 the	standby	current	(i stb1 ~i stb3)	and	i dd4 	are	measured	with	all	 i/o	pins	in	input	mode	and	tied	to	 v dd .

 rev. 1.10 14 ?a? 0?? ?01? rev. 1.10 15 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu a.c. characteristics ta= ?5c symbol parameter test conditions min. typ. max. unit v dd conditions f sys s?stem clock ?.?v~5.5v 3? 4000 khz 3.0v~5.5v 3? 8000 khz 4.5v~5.5v 3? 1?000 khz f hirc s?stem clock (hirc) 3v/5v ta= ?5 c -?% 4 +?% ?hz 3v/5v ta= ?5 c -?% 8 +?% ?hz 5v ta= ?5 c -?% 1? +?% ?hz 3v/5v ta=0~70 c -5% 4 +5% ?hz 3v/5v ta=0~70 c -5% 8 +5% ?hz 5v ta=0~70 c -5% 1? +5% ?hz ?.?v~3.6v ta=0~70 c -8% 4 +8% ?hz 3.0v~5.5v ta=0~70 c -8% 4 +8% ?hz 3.0v~5.5v ta=0~70 c -8% 8 +8% ?hz 4.5v~5.5v ta=0~70 c -8% 1? +8% ?hz ?.?v~3.6v ta=-40 c~85 c -1?% 4 +1?% ?hz 3.0v~5.5v ta=-40 c~85 c -1?% 4 +1?% ?hz 3.0v~5.5v ta=-40 c~85 c -1?% 8 +1?% ?hz 4.5v~5.5v ta=-40 c~85 c -1?% 1? +1?% ?hz f erc s?stem clock (erc) 5v ta= ?5 c? r=1?0 k* -?% 4 +?% ?hz 5v ta=0~70 c? r=1?0 k* -5% 4 +5% ?hz 5v ta=-40 c~85 c? r=1?0 k* -7% 4 +7% ?hz ?.?v~5.5v ta=-40 c~85 c? r=1?0 k* -11% 4 +11% ?hz f lxt s?stem clock (lxt) 3?768 hz t ti?er timer input frequenc ? (tcn) ?.?v~5.5v 0 4000 khz 3.0v~5.5v 0 8000 khz 4.5v~5.5v 0 1?000 khz f lirc lirc oscillator 3v 5 10 15 khz 5v 6.5 13 19.5 khz t res external reset low pulse width 1 s t sst s?stem start-up time period ? 1?8 t sys t sys t sys t int interrupt fulse width 1 s t lvr low voltage width to reset 0.?5 1 ? ms restd reset dela ? time 100 ms 1rwhw sys i sys i ddids dd dd i d d i d s dsd d dddyds

 rev. 1.10 14 ?a? 0?? ?01? rev. 1.10 15 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu adc characteristics ta= ?5 c symbol parameter test conditions min. typ. max. unit v dd conditions dnl a/c differential non-linearit ? 3v t ad =0.5 s -? ? lsb 5v inl adc integral non-linearit? 3v t ad =0.5 s -4 4 lsb 5v i adc additional power consumption if a/d converter is used 3v 0.5 0.75 ma 5v 1.0 1.5 ma dac electrical characteristics symbol parameter test conditions min. typ. max. unit v dd conditions v dac dac operating voltage ?.4 v i q dac q uiescent current 5v code= 0000h v ol =00h ? 3 ma i dac dac operating current 5v 1 khz sin wave? full-scale (8k sample rate) 3 4.5 ma res resolution 1? bit v o output voltage level 0.01 0.99 v dd power-on reset characteristics ta= ?5c symbol parameter test conditions min. typ. max. unit v dd conditions v por v dd start voltage to ensure power-on reset 100 mv rrv dd v dd raising rate to ensure power-on reset 0.035 v/ms t por ? inimum time for v dd to remain at v por to e nsure power-on reset 1 ms

 rev. 1.10 16 ?a? 0?? ?01? rev. 1.10 17 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu system architecture a 	 key	 factor	 in	 the	 high-performance 	 features	 of	 the	 holtek	 range	 of	 microcontrollers	 is	 attributed	 to	 the	 internal	 system	 architecture.	 the	 range	 of	 devices	 take	 advantage 	 of	 the	 usual	 features	 found	 within 	 risc 	 microcontrollers 	 providing	 increased 	 speed 	 of	 operation	 and	 enhanced	 performance. 	 the 	 pipelining 	 scheme 	 is 	 implemented 	 in 	 such 	 a 	 way 	 that 	 instruction 	 fetching 	 and 	 instruction 	 execution 	 are 	 overlapped, 	 hence 	 instructions 	 are 	 effectively 	 executed 	 in 	 one 	 cycle, 	 with 	 the 	 exception	 of	 branch	 or	 call	 instructions. 	 an 	 8-bit	 wide 	 alu 	 is	 used 	 in	 practically	 all	 operations 	 of	 the 	 instruction 	 set. 	 it 	 carries 	 out 	 arithmetic 	 operations, 	 logic 	 operations, 	 rotation, 	 increment, 	 decrement,	 branch	 decisions,	 etc.	 the	 internal	 data	 path	 is	 simplifed	 by	 moving	 data	 through	 the 	 accumulator	 and	 the	 alu.	 certain 	 internal 	 registers 	 are	 implemented 	 in	 the	 data	 memory	 and 	 can	 be	 directly	 or	 indirectly	 addressed.	 the	 simple	 addressing	 methods 	 of	 these	 registers	 along 	 with	 additional	 architectural	 features	 ensure	 that	 a	 minimum	 of	 external	 components	 is	 required	 to	 provide	a	functional	i/o	and	 a/d	control	system	with	maximum	reliability	and	 fexibility. clocking and pipelining the	 main	 system	 clock,	 derived	 from	 either	 a	 crystal/resonator	 or	 rc	 oscillator	 is	 subdivided	 into	 four	 internally	 generated	 non-overlapping	 clocks,	 t1~t4.	 the	 program	 counter	 is	 incremented	 at 	 the	 beginning	 of	 the	 t1	 clock	 during	 which	 time	 a	 new	 instruction	 is	 fetched.	 the	 remaining	 t2~t4	 clocks	 carry	 out	 the	 decoding	 and	 execution	 functions.	 in	 this	 way, 	 one	 t1~t4	 clock	 cycle	 forms 	 one	 instruction	 cycle.	 although	 the	 fetching	 and	 execution	 of	 instructions 	 takes	 place	 in	 consecutive	 instruction 	 cycles, 	 the 	 pipelining 	 structure 	 of 	 the 	 microcontroller 	 ensures 	 that 	 instructions 	 are 	 effectively 	 executed	 in	 one	 instruction	 cycle.	 the	 exception	 to	 this	 are	 instructions	 where	 the 	 contents	 of	 the	 program	 counter	 are	 changed,	 such	 as	 subroutine	 calls	 or	 jumps,	 in	 which	 case	 the	 instruction	will	take	one	more	instruction	cycle	to	execute. for	 instructions	 involving	 branches,	 such	 as	 jump	 or	 call	 instructions,	 two	 instruction	 cycles	 are 	 required	 to	 complete	 instruction	 execution.	 an	 extra	 cycle	 is	 required	 as	 the	 program	 takes	 one 	 cycle 	 to 	 frst 	 obtain 	 the 	 actual 	 jump 	 or	 call 	 address 	 and 	 then 	 another 	 cycle 	 to 	 actually 	 execute 	 the 	 branch.	 the	 requirement	 for	 this	 extra	 cycle	 should	 be	 taken	 into	 account 	 by	 programmers	 in	 timing	 sensitive	applications.	

 	 �
 ? � � ? � ? 	 ? 	 	 ? system clocking and pipelining

 rev. 1.10 16 ?a? 0?? ?01? rev. 1.10 17 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	 � ? ? ? ? ? ? ? ? ? 	 	 ? instruction fetching program counter during	 program	 execution,	 the	 program	 counter	 is	 used	 to	 keep	 track	 of	 the	 address	 of	 the	 next 	 instruction	 to	 be	 executed.	 it	 is	 automatically	 incremented	 by	 one	 each	 time	 an	 instruction	 is 	 executed 	 except 	for	 instructions,	 such	 as	"jmp"	or	 "call"	 that 	 demand	a 	 jump	 to	a 	 non-consecutive 	 program	 memory	 address.	 note	 that	 the	 program	 counter	 width	 varies	 with	 the	 program	 memory	 capacity	 depending 	 upon	 which	 device	 is	 selected.	 however, 	 it	 must	 be	 noted	 that	 only	 the	 lower	 8	 bits,	known	as	the	program	counter	low	 register,	are	directly	addressable	by	 user. when	 executing 	 instructions	 requiring 	 jumps	 to	 non-consecutive	 addresses	 such	 as	 a	 jump 	 instruction, 	 a 	 subroutine 	 call, 	 interrupt 	 or	 reset, 	 etc., 	 the 	 microcontroller 	 manages 	 program 	 control 	 by	 loading	 the	 required	 address	 into	 the	 program	 counter. 	 for	 conditional	 skip	 instructions,	 once 	 the	 condition	 has	 been	 met,	 the	 next	 instruction,	 which	 has	 already	 been	 fetched	 during	 the	 present	 instruction	 execution, 	 is	 discarded	 and	 a	 dummy	 cycle	 takes	 its	 place	 while	 the	 correct	 instruction	 is	 obtained. device program counter program counter high byte pcl register ht46r068b pc13~pc8 pcl7~pcl0 ht46r069b pc14~pc8 14 13 1? 8 7 0 program counter bp 5 bp 6 bank pointer(bp) the	 lower	 byte	 of	 the	 program	 counter, 	 known	 as	 the	 program	 counter	 low	 register	 or	 pcl,	 is 	 available	 for	 program	 control	 and	 is	 a	 readable	 and	 writeable	 register. 	 by	 transferring	 data	 directly	 into 	 this 	 register, 	 a 	 short 	 program 	 jump 	 can 	 be 	 executed 	 directly, 	 however, 	 as 	 only 	 this 	 low 	 byte 	 is	 available	 for	 manipulation,	 the	 jumps 	 are	 limited	 to	 the	 present	 page 	 of	 memory, 	 that	 is	 256 	 locations.	 when	 such	 program	 jumps	 are	 executed	 it	 should	 also	 be	 noted	 that	 a	 dummy	 cycle	 will	 be	inserted. the	 lower	 byte	 of	 the	 program	 counter	 is	 fully	 accessible	 under	 program	 control.	 manipulating	 the	 pcl 	 might	 cause	 program	 branching, 	 so	 an	 extra	 cycle	 is	 needed	 to	 pre-fetch.	 further	 information	 on	the	pcl 	register	can	be	found	in	the	special	function	register	section.

 rev. 1.10 18 ?a? 0?? ?01? rev. 1.10 19 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu stack this	 is	 a	 special	 part	 of	 the	 memory	 which	 is	 used	 to	 save	 the	 contents	 of	 the	 program	 counter 	 only. 	 the 	 stack 	 is 	 neither 	 part 	 of 	 the 	 data 	 or 	 program 	 memory 	 space, 	 and 	 is 	 neither 	 readable 	 nor 	 writeable.	 the	 activated	 level	 is	 indexed	 by	 the	 stack	 pointer, 	 sp, 	 and	 is	 neither	 readable	 nor 	 writeable.	 at	 a	 subroutine	 call	 or	 interrupt	 acknowledge	 signal,	 the	 contents	 of	 the	 program	 counter	 are	 pushed 	 onto	 the	 stack. 	 at 	 the	 end	 of	 a	 subroutine 	 or	 an	 interrupt 	 routine, 	 signaled 	 by	 a	 return 	 instruction, 	 ret 	 or 	 reti, 	 the 	 program 	 counter 	 is 	 restored 	 to 	 its 	 previous 	 value 	 from 	 the 	 stack. 	 after 	 a	device	reset,	the	stack	pointer	will	point	to	the	top	of	the	stack.

 	 device stack levels ht46r068b ht46r069b 8 if	 the	 stack	 is	 full	 and	 an	 enabled	 interrupt	 takes	 place,	 the	 interrupt	 request	 fag	 will	 be	 recorded	 but	 the	 acknowledge	 signal	 will	 be	 inhibited.	 when	 the	 stack	 pointer	 is	 decremented,	 by	 ret 	 or	 reti,	 the	 interrupt	 will	 be	 serviced.	 this	 feature	 prevents	 stack	 overfow	 allowing 	 the	 programmer	 to	 use	 the	 structure 	 more	 easily. 	 however, 	 when	 the	 stack	 is	 full,	 a	 call 	 subroutine	 instruction	 can	 still	 be	 executed 	 which	 will	 result	 in	 a	 stack	 overfow. 	 precautions	 should	 be	 taken	 to	 avoid	 such	 cases	 which	might	cause	unpredictable	program	branching. arithmetic and logic unit C alu the	 arithmetic-logic 	 unit	 or	 alu	 is	 a	 critical	 area	 of	 the	 microcontroller 	 that	 carries	 out	 arithmetic	 and	 logic	 operations	 of	 the	 instruction 	 set.	 connected	 to	 the	 main	 microcontroller 	 data	 bus,	 the	 alu	 receives 	 related	 instruction 	 codes 	 and	 performs 	 the	 required	 arithmetic	 or	 logical	 operations	 after 	 which	 the	 result	 will	 be	 placed	 in	 the	 specifed	 register. 	 as	 these	 alu	 calculation	 or	 operations	 may	 result	 in	 carry, 	 borrow	 or	 other	 status	 changes,	 the	 status	 register	 will	 be	 correspondingly	 updated	 to	 refect	these	changes.	 the	 alu	supports	the	following	functions: ?	 arithmetic	operations:	 add,	 addm,	 adc,	 adcm,	sub,	subm,	sbc,	sbcm,	daa ?	 logic	operations:	 and,	or,	xor,	 andm,	orm,	xorm,	cpl,	cpla ?	 rotation	rra,	rr,	rrca,	rrc,	rla,	rl,	rlca,	rlc ?	 increment	and	decrement	inca,	inc,	deca,	dec ?	 branch	decision,	 jmp,	sz,	sza,	snz,	siz,	sdz,	siza,	sdza,	call,	 ret,	reti

 rev. 1.10 18 ?a? 0?? ?01? rev. 1.10 19 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu program memory the	 program	 memory	 is	 the	 location	 where	 the	 user	 code	 or	 program	 is	 stored.	 the	 device	 is 	 supplied	 with	 one-time 	 programmable,	 otp, 	 memory	 where	 users	 can	 program	 their	 application 	 code	 into	 the	 device.	 by	 using	 the	 appropriate	 programming	 tools,	 otp 	 devices	 offer 	 users	 the 	 fexibility	 to	 freely	 develop	 their	 applications	 which	 may	 be	 useful	 during	 debug	 or	 for	 products 	 requiring	frequent	upgrades	or	program	changes.	 structure the	 program	 memory	 has	 a	 capacity	 of	 16kx16/32kx16.	 the	 program	 memory	 is	 addressed	 by	 the	 program	 counter	 and	 also	 contains 	 data,	 table	 information	 and	 interrupt	 entries.	 table 	 data,	 which	 can 	 be 	 setup 	 in 	 any 	 location 	 within 	 the 	 program 	 memory, 	 is 	 addressed 	 by	 separate 	 table 	 pointer 	 registers. device capacity banks ht46r068b 16kx16 0?1 ht46r069b 3?kx16 0~3 the	 devices	 have	 their	 program	 memory	 divided	 into	 a	 number	 of	 banks	 which	 are	 selected	 using	 the	 bank	 pointer	 register. 	 the	 ht46r068b	 has	 its	 program	 memory	 divided	 into	 two	 banks,	 bank	 0	 and	 bank	 1.	 the	 required	 bank	 is	 selected	 using	 bit	 5	 of	 the	 bp 	 register. 	 the	 ht46r069b	 has	 its	 program	 memory	 divided	 into	 four	 banks,	 from	 bank0	 to	 bank3.	 the	 required	 bank	 is	 selected	 using	bit	5	and	bit	6	of	the	bp 	 register.

	

 	

 �
 ?

 ?

 ?? ?
 �
 ?

 ? ?? ?

 rev. 1.10 ?0 ?a? 0?? ?01? rev. 1.10 ?1 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu special vectors within 	 the 	 program 	 memory, 	 certain 	 locations 	 are 	 reserved 	 for	 special 	 usage 	 such 	 as 	 reset 	 and 	 interrupts. ?	 reset	 vector this	 vector	 is	 reserved	 for	 use	 by	 the	 device	 reset	 for	 program	 initialisation.	 after	 a	 device	 reset	 is	initiated,	the	program	will	jump	to	this	location	and	begin	execution. ?	 external	interrupt	vector this	 vector	 is	 used	 by	 the	 external	 interrupt.	 if	 the	 external	 interrupt	 pin	 on	 the	 device	 receives	 an	 edge	 transition, 	 the	 program	 will	 jump 	 to	 this 	 location	 and	 begin	 execution 	 if	 the	 external 	 interrupt	 is	 enabled	 and	 the	 stack	 is	 not	 full.	 the	 external	 interrupt	 active	 edge	 transition	 type, 	 whether	high	to	 low,	low	to	high	or	both	is	specifed	in	the	ctrl1	 register. ?	 timer/event 	0/1/2	counter	interrupt	vector this	 internal	 vector	 is 	 used	 by	 the	 timer/event 	 counters. 	 if	 a	 timer/event 	 counter	 overflow 	 occurs, 	 the 	 program 	 will 	 jump 	 to 	 its 	 respective 	 location 	 and 	 begin 	 execution 	 if 	 the 	 associated 	 timer/event 	counter	interrupt	is	enabled	and	the	stack	is	not	full. ?	 multi-function	interrupt	vector the	multi-function	interrupt	vector	is	shared	by	several	internal	functions:	a	 time 	base	 overfow,	 an	 spi/i 2 c	 or	 spia 	 data	 transfer	 completion.	 the	 program	 will	 jump	 to	 this	 location	 and	 begin	 execution	if	the	relevant	interrupt	is	enabled	and	the	stack	is	not	full. look-up table any	 location	 within	 the	 program	 memory	 can	 be	 defned	 as	 a	 look-up	 table	 where	 programmers	 can	 store	 fxed	 data.	 to 	 use	 the	 look-up	 table,	 the	 table	 pointer	 must	 frst	 be	 setup	 by	 placing	 the	 lower	 order 	 address 	 of 	 the 	 look 	 up 	 data 	 to 	 be 	 retrieved 	 in 	 the 	 table 	 pointer 	 register, 	 tblp. 	 this 	 register 	 defnes	the	lower	8-bit	address	of	the	look-up	table. after	 setting	 up	 the	 table	 pointer, 	 the	 table	 data	 can	 be	 retrieved	 from	 the	 current	 program	 memory	 page 	 or	 last 	 program 	 memory 	 page 	 using 	 the 	 "tabrdc[m]" 	 or	 "tabrdl[m]" 	 instructions, 	 respectively. 	 when	these	instructions	are	executed,	the	lower	order	table	byte	from	the	program	 memory	 will	 be	 transferred	 to	 the	 user	 defined	 data	 memory	 register	 [m]	 as	 specified	 in	 the 	 instruction. 	 the	 higher 	 order	 table 	 data 	 byte 	 from	 the	 program	 memory 	 will 	 be	 transferred	 to	 the 	 tblh	special	 register.	 any	unused	bits	in	this	transferred	higher	order	byte	will	be	read	as	"0". the	following	diagram	illustrates	the	addressing/data	fow	of	the	look-up	table:

 	
 	 	

 �? ?

 rev. 1.10 ?0 ?a? 0?? ?01? rev. 1.10 ?1 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu table program example the	accompanying	example	shows	how	the	table	pointer	and	table	data	is	defned	and	retrieved	from 	 the	 device. 	 this	 example	 uses	 raw	 table	 data	 located	 in	 the	 last	 page	 which	 is	 stored	 there	 using	 the	 org	 statement.	 the	 value	 at	 this	 org	 statement	 is	 "7f00h"	 which	 refers	 to	 the	 start	 address	 of	 the	 last	 page	 within	 the	 32k	 program	 memory	 of	 the	 microcontrollers.	 the	 table	 pointer	 is	 setup	 here	 to	 have	 an	 initial	 value	 of	 "06h".	 this	 will	 ensure	 that	 the	 frst	 data	 read	 from	 the	 data	 table	 will	 be	 at	 the	 program	 memory	 address	 "7f06h"	 or	 6	 locations	 after	 the	 start	 of	 the	 last	 page.	 note	 that	 the	 value	 for	 the	 table 	 pointer	 is	 referenced	 to	 the	 frst	 address	 of	 the	 present	 page	 if	 the	 "tabrdc 	 [m]"	 instruction	 is	 being	 used.	 the	 high	 byte	 of	 the	 table	 data	 which	 in	 this	 case	 is	 equal	 to	 zero	 will	 be	 transferred	to	the	 tblh	register	automatically	when	the	 "tabrdl 	[m]"	instruction	is	executed. because 	 the	 tblh 	 register	 is 	 a	 read-only	 register	 and	 cannot	 be	 restored, 	 care	 should	 be	 taken 	 to	 ensure	 its	 protection	 if	 both	 the	 main	 routine	 and	 interrupt	 service	 routine	 use	 the	 table	 read 	 instructions.	 if	 using	 the	 table	 read	 instructions,	 the	 interrupt	 service	 routines	 may	 change	 the 	 value	 of	 tblh	 and	 subsequently	 cause	 errors	 if	 used	 again	 by	 the	 main	 routine.	 as	 a	 rule	 it	 is 	 recommended	 that	 simultaneous	 use	 of	 the	 table	 read	 instructions	 should	 be	 avoided.	 however, 	 in 	 situations	 where	 simultaneous	 use	 cannot	 be	 avoided,	 the	 interrupts	 should	 be	 disabled	 prior	 to	 the	 execution	 of	 any	 main	 routine	 table-read	 instructions.	 note	 that	 all	 table	 related	 instructions	 require	 two	instruction	cycles	to	complete	their	operation. instruction(s) table location b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 tabrdc [m] pc14 pc13 pc1? pc11 pc10 pc9 pc8 @7 @6 @5 @4 @3 @? @1 @0 tabrdl [m] 1 1 1 1 1 1 1 @7 @6 @5 @4 @3 @? @1 @0 note:	pc14~pc8:	current	program	counter	bits 	 @7~@0:	 table 	pointer	 tblp 	bits 	 for	the	ht46r068b,	the	 table 	address	location	is	14	bits,	i.e.	from	b13~b0 	 for	the	ht46r069b,	the	 table 	address	location	is	15	bits,	i.e.	from	b14~b0 table read program example tempr eg1 db ? ; temporary register #1 tempreg2 db ? ; temporary register #2 : : mov a, 060h mov bp, a ; select the last bank of prog. memory mov a, 06h ; initialise table pointer - note that this address is referenced mov tblp,a ; to the last page or present page : : tabrdl tempreg1 ; transfers value in table referenced by table pointer to tempregl ; data at prog. memory address "7f06" transferred to tempreg1 and tblh dec tblp ; reduce value of table pointer by one tabrdl tempreg2 ; transfers value in table referenced by table pointer to tempreg2 ; data at prog.memory address "7f06" transferred to tempreg2 and tblh ; in this example the data "1ah" is transferred to ; tempreg1 and data "0fh" to register tempreg2 ; the value "00h" will be transferred to the high byte register tblh : : org 7f00h ; sets initial address of last page dc 00ah, 00bh, 00ch, 00dh, 00eh, 00fh, 01ah, 01bh : :

 rev. 1.10 ?? ?a? 0?? ?01? rev. 1.10 ?3 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu data memory the 		 data	 memory	 is	 a	 volatile	 area	 of	 8-bit	 wide	 ram	 internal	 memory 	 and	 is	 the	 location	 where	 temporary	information	is	stored.	 structure divided	 into	 two	 sections,	 the	 frst	 of	 these	 is	 an	 area	 of	 ram	 where	 special	 function	 registers	 are	 located. 	 these 	 registers 	 have 	 fxed 	 locations 	 and 	 are 	 necessary 	 for 	 correct 	 operation 	 of 	 the 	 device. 	 many	 of	 these	 registers	 can	 be	 read	 from	 and	 written	 to	 directly	 under	 program	 control,	 however, 	 some	 remain	 protected 	 from	 user 	 manipulation.	 the	 second	 area	 of	 data	 memory 	 is	 reserved	 for 	 general 	 purpose 	 use. 	 all 	 locations 	 within 	 this 	 area 	 are 	 read 	 and 	 write 	 accessible 	 under 	 program 	 control. device capacity banks ht46r068b 51?x8 0~3 ht46r069b 10?4x8 0~7 the	 two	 sections	 of	 data	 memory, 	 the	 special	 purpose	 and	 general	 purpose	 data	 memory	 are 	 located	 at	 consecutive	 locations.	 all	 are	 implemented	 in	 ram	 and	 are	 8	 bits	 wide	 but	 the	 length	 of	 each	 memory 	 section	 is	 dictated	 by	 the	 type	 of	 microcontroller	 chosen.	 the	 start	 address	 of	 the	 data	 memory	for	all	devices	is	the	address	"00h". all	 microcontroller	 programs	 require	 an	 area	 of	 read/write	 memory	 where	 temporary	 data	 can	 be 	 stored	 and	 retrieved 	 for	 use	 later. 	 it	 is	 this	 area	 of	 ram	 memory	 that	 is	 known	 as	 general	 purpose	 data	 memory. 	 this	 area	 of	 data	 memory	 is	 fully	 accessible	 by	 the	 user	 program	 for	 both	 read	 and	 write	 operations.	 by	 using	 the	 "set 	 [m].i"	 and	 "clr	 [m].i"	 instructions 	 individual	 bits	 can	 be	 set	 or	 reset	 under	 program	 control	 giving	 the	 user	 a	 large 	 range	 of	 fexibility	 for	 bit	 manipulation	 in	 the	 data	 memory.	 for	 some 	 devices, 	 the 	 data 	 memory 	 is 	 subdivided 	 into 	 several 	 banks,	 which 	 are	 selected 	 using 	 a	 bank	 pointer. 	 only	 data	 in	 bank	 0	 can	 be	 directly	 addressed,	 data	 in	 bank	 1~bank	 7	 must	 be 	 indirectly	addressed.

 rev. 1.10 ?? ?a? 0?? ?01? rev. 1.10 ?3 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	 	

 	 	

 	 	
 ht46r068b

 	 	

 	 	

 	 	
 ht46r069b data memory structure note:	most	of	the	data	memory	bits	can	be	directly	manipulated	using	the	"set 	[m].i"	and	"clr	 [m].i"	with	the	exception	of	a	few	dedicated	bits.	 the	data	meomory	can	also	be	accessed	 through	the	memory	pointer	registers. special purpose data memory this	 area	 of	 data	 memory	 is	 where	 registers,	 necessary	 for	 the	 correct	 operation	 of	 the 	 microcontroller, 	 are	 stored.	 most	 of	 the	 registers	 are	 both	 readable	 and	 writeable	 but	 some	 are 	 protected	 and	 are	 readable	 only, 	 the	 details	 of	 which	 are	 located	 under	 the	 relevant	 special	 function	 register	 section.	 note	 that	 for	 locations 	 that	 are	 unused,	 any	 read	 instruction	 to	 these	 addresses	 will	 return	the	value	"00h".

 rev. 1.10 ?4 ?a? 0?? ?01? rev. 1.10 ?5 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu special function registers to 	 ensure	 successful	 operation	 of	 the	 microcontroller, 	 certain	 internal	 registers	 are	 implemented	 in	 the	 data	 memory	 area.	 these	 registers	 ensure	 correct	 operation	 of	 internal	 functions	 such	 as	 timers,	 interrupts,	 etc.,	 as	 well	 as	 external	 functions	 such	 as	 i/o	 data	 control.	 the	 location	 of	 these	 registers	 within	 the	 data	 memory	 begins	 at	 the	 address	 "00h"	 and	 are	 mapped	 from	 bank	 0	 to	 bank	 7.	 any	 unused	 data	 memory	 locations	 between	 these	 special	 function	 registers	 and	 the	 point	 where	 the 	 general	 purpose	 memory	 begins	 is	 reserved	 and	 attempting	 to	 read	 data	 from	 these	 locations	 will 	 return	a	value	of	"00h". indirect addressing registers C iar0, iar1 the	 indirect	 addressing	 registers,	 iar0	 and	 iar1,	 although	 having	 their	 locations	 in	 normal	 ram	 register 	space,	do	not	 actually	 physically	exist	as	normal 	 registers.	 the 	 method	of	 indirect 	 addressing 	 for	 ram	 data	 manipulation	 uses	 these	 indirect	 addressing	 registers	 and	 memory	 pointers,	 in 	 contrast	 to	 direct	 memory	 addressing,	 where	 the	 actual	 memory	 address	 is	 specifed.	 actions	 on	 the	 iar0	 and	 iar1	 registers	 will	 result	 in	 no	 actual	 read	 or	 write	 operation 	 to	 these	 registers	 but	 rather	 to	 the	 memory	 location	 specifed	 by	 their	 corresponding	 memory	 pointer, 	 mp0	 or	 mp1.	 acting	 as	 a	 pair, 	 iar0	 with	 mp0	 and	 iar1	 with	 mp1	 can	 together	 access	 data	 from	 the	 data	 memory. 	 as 	 the 	 indirect 	 addressing	 registers 	 are 	 not	 physically 	 implemented, 	 reading 	 the 	 indirect 	 addressing 	 registers	 indirectly 	 will	 return	 a	 result	 of	 "00h"	 and	 writing	 to	 the	 registers	 indirectly	 will	 result	 in	 no	operation. memory pointers C mp0, mp1 two 	 memory 	 pointers, 	 known 	 as 	 mp0 	 and 	 mp1 	 are 	 provided. 	 these 	 memory 	 pointers 	 are 	 physically	 implemented	 in	 the	 data	 memory	 and	 can	 be	 manipulated	 in	 the	 same	 way	 as	 normal 	 registers	 providing	 a	 convenient	 way	 with	 which	 to	 indirectly	 address	 and	 track	 data.	 mp0	 can	 only	 be	 used	 to	 indirectly	 address	 data	 in	 bank	 0	 while	 mp1	 can	 be	 used	 to	 address	 data	 from	 bank	 0 	 and	 bank	 7.	 when	 any	 operation	 to	 the	 relevant	 indirect	 addressing	 registers	 is	 carried	 out,	 the 	 actual	 address	 that	 the	 microcontroller 	 is	 directed	 to,	 is	 the	 address	 specifed	 by	 the	 related	 memory	 pointer. 	 note	 that	 indirect	 addressing	 using	 mp1	 and	 iar1	 must	 be	 used	 to	 access	 any	 data	 in	 bank	 1~bank 	 7 	 . 	 the 	 following 	 example 	 shows 	 how 	 to 	 clear 	 a 	 section 	 of 	 four 	 data 	 memory 	 locations 	 already	defned	as	locations	adres1	to	adres4.	 ht46r068b ht46r069b 00h iar0 iar0 01h ?p0 ?p0 0?h iar1 iar1 03h ?p1 ?p1 04h bp bp 05h acc acc 06h pcl pcl 07h tblp tblp 08h tblh tblh 09h wdts wdts 0ah status status 0bh intc0 intc0 0ch t?r0 t?r0 0dh t?r0c t?r0c 0eh t?r1 t?r1

 rev. 1.10 ?4 ?a? 0?? ?01? rev. 1.10 ?5 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b ht46r069b 0fh t?r1c t?r1c 10h pa pa 11h pac pac 1?h papu papu 13h pawk pawk 14h pb pb 15h pbc pbc 16h pbpu pbpu 17h pc pc 18h pcc pcc 19h pcpu pcpu 1ah ctrl0 ctrl0 1bh ctrl1 ctrl1 1ch sco?c sco?c 1dh pw?1 pw?1 1eh intc1 intc1 1fh pw?0 pw?0 ?0h adrl adrl ?1h adrh adrh ??h adcr adcr ?3h acsr acsr ?4h ?fic ?fic ?5h pd pd ?6h pdc pdc ?7h pdpu pdpu ?8h pe pe ?9h pec pec ?ah pepu pepu ?bh pf pf ?ch pfc pfc ?dh pfpu pfpu ?eh ?fh 30h pw?? pw?? 31h ctrl? ctrl? 3?h 3ah 3bh pg pg 3ch pgc pgc 3dh pgpu pgpu 3eh ph 3fh phc 40h phpu 41h t?r?l t?r?l 4?h t?r?h t?r?h

 rev. 1.10 ?6 ?a? 0?? ?01? rev. 1.10 ?7 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b ht46r069b 43h t?r?c t?r?c 44h pw?3 pw?3 45h 46h si?c0 si?c0 47h si?c1 si?c1 48h si?d si?d 49h si?a/si?c? si?a/si?c? 4ah spiac0 spiac0 4bh spiac1 spiac1 4ch spiad spiad 4dh ancsr0 ancsr0 4eh ancsr1 ancsr1 4fh 50h dal dal 51h dah dah 5?h vol vol 53h 54h lvdc lvdc .. 7fh genernal purpose data memor? 514 b?tes 4 banks (80h~ffh) 10?4 b?tes 8 banks (80h~ffh) indirect addressing program example data .section 'data' adres1 db ? adres2 db ? adres3 db ? adres4 db ? block db ? code .section at 0 code org 00h start: mov a,04h ; setup size of block mov block,a 	 mov 	 a,offset 	 adres1	 ; 	 accumulator 	 loaded 	 with 	 frst 	 ram 	 address mov mp0,a ; setup 	 memory 	 pointer 	 with 	 frst 	 ram 	 address loop: 	 clr 	 iar0	 	 	 	 ; 	 clear 	 the 	 data 	 at 	 address 	 defned 	 by 	 mp0 inc mp0 ; increment memory pointer sdz block ; check if last memory location has been cleared jmp loop continue: 7hlsudslhhuhldlhhdsohdeyhuhihuhfhldhshflf 'dd0huduhh

 rev. 1.10 ?6 ?a? 0?? ?01? rev. 1.10 ?7 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu accumulator C acc the	 accumulator 	 is 	 central	 to	 the	 operation	 of	 any	 microcontroller	 and	 is 	 closely 	 related	 with 	 operations	 carried	 out	 by	 the	 alu.	 the	 accumulator	 is	 the	 place	 where	 all	 intermediate	 results 	 from	 the	 alu	 are	 stored.	 without 	 the	 accumulator	 it	 would	 be	 necessary	 to	 write	 the	 result	 of 	 each 	 calculation 	 or	 logical 	 operation 	 such 	 as 	 addition, 	 subtraction, 	 shift, 	 etc., 	 to 	 the 	 data 	 memory 	 resulting 	 in 	 higher 	 programming 	 and	 timing 	 overheads.	 data 	 transfer 	 operations 	 usually 	 involve 	 the 	 temporary 	 storage 	 function 	 of	 the 	 accumulator; 	 for	 example, 	 when 	 transferring 	 data 	 between 	 one	 user	 defined 	 register 	 and	 another, 	 it 	 is	 necessary	 to	 do	 this	 by	 passing	 the	 data	 through	 the 	 accumulator	as	no	direct	transfer	between	two	registers	is	permitted. program counter low register C pcl to 	 provide	 additional	 program	 control	 functions,	 the	 low	 byte	 of	 the	 program	 counter	 is	 made 	 accessible	 to	 programmers	 by	 locating	 it	 within	 the	 special	 purpose	 area	 of	 the	 data	 memory. 	 by	 manipulating	 this	 register, 	 direct	 jumps	 to	 other	 program	 locations	 are	 easily	 implemented.	 loading	 a	 value	 directly	 into	 this	 pcl 	 register	 will	 cause	 a	 jump	 to	 the	 specifed	 program	 memory	 location,	 however, 	 as	 the	 register	 is	 only	 8-bit	 wide,	 only	 jumps	 within	 the	 current	 program	 memory	 page	 are	 permitted.	 when	such	operations	are	used,	note	that	a	dummy	cycle	will	be	inserted. bank pointer C bp in	 the	 ht46r068b	 and	 ht46r069b	 devices,	 the	 data	 memory	 is	 divided	 into	 several	 banks,	 from	 bank	 0	 to	 bank	 7.	 a 	 bank	 pointer	 is	 used	 to	 select	 the	 required	 data	 memory	 bank.	 only	 data	 in	 bank 	 0	 can 	 be 	 directly 	 addressed 	 as 	 data 	 in 	 bank 	 1~bank 	 7	 must 	 be 	 indirectly 	 addressed 	 using 	 memory	 pointer	 mp1	 and	 indirect	 addressing	 register	 iar1.	 using	 memory	 pointer	 mp0	 and 	 indirect	 addressing	 register	 iar0	 will	 always	 access 	 data	 from	 bank	 0,	 irrespective	 of	 the	 value 	 of	 the 	 bank 	 pointer. 	 memory 	 pointer 	 mp1	 and 	 indirect 	 addressing 	 register 	 iar1	 can 	 indirectly 	 address	data	in	either	bank	0	or	bank	1~bank	7	depending	upon	the	value	of	the	bank	 pointer. the	 data	 memory	 is	 initialised	 to	 bank	 0	 after	 a	 reset,	 except	 for	 the	 wdt 	 time-out	 reset	 in	 the	 idle/ sleep	 mode,	 in	 which	 case,	 the	 data	 memory	 bank	 remains	 unaffected. 	 it	 should	 be	 noted	 that	 special	 function 	 data 	 memory 	 is 	 not 	 affected 	 by	 the 	 bank 	 selection, 	 which 	 means 	 that 	 the 	 special 	 function 	 registers	 can	 be	 accessed	 from	 within	 either	 bank	 0	 or	 bank	 1~bank	 7.	 directly	 addressing	 the	 data 	 memory	will	always	result	in	bank	0	being	accessed	irrespective	of	the	value	of	the	bank	 pointer. ?	 ht46r068b bit 7 6 5 4 3 2 1 0 name p?bp0 d?bp1 d?bp0 r/w r/w r/w r/w por 0 0 0 bit	 7~6	 unimplemented,	read	as	"0" bit	5	 pmbp0 :	program	memory	bank	 p oint 	 		 0:	bank	0 	 		1:	bank	1 bit	 4~2	 unimplemented,	read	as	"0" bit	1,0	 dmbp1, dmbp0 :	data	memory	 ank	 p oint 	 		 00:bank	0 	 		01:bank	1 	 		10:bank	2 	 		 11:bank	3

 rev. 1.10 ?8 ?a? 0?? ?01? rev. 1.10 ?9 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? ht46r069b bit 7 6 5 4 3 2 1 0 bp p?bp1 p?bp0 d?bp? d?bp1 d?bp0 r/w r/w r/w r/w r/w r/w por 0 0 0 0 0 %lw xqlpsohphqwhguhdgdv %lw pmbp1, pmbp0 3urudp0hprudn3rlwhu dn dn dn dn lw xlpsohphwhguhdgdv lw dmbp2, dmbp1, dmbp0 dwd0hprudn3rlwhu dn dn dn dn dn dn dn dn status register C status 7klv elw uhjlvwhu frqwdlqv wkh]hur dj = fduu dj & dx[loldu fduu dj & ryhurz dj 29 srzhu grzq dj 3) dqg zdwfkgrj wlphrxw dj 72 7khvh dulwkphwlforjlfdo rshudwlrq dqgvvwhppdqdjhphqwdjvduhxvhgwruhfrugwkhvwdwxvdqgrshudwlrqriwkh plfurfrqwuroohu :lwk wkh h[fhswlrq ri wkh 72 dqg 3) djv elwv lq wkh vwdwxv uhjlvwhu fdq eh dowhuhg e lqvwuxfwlrqv olnhprvwrwkhuuhjlvwhuv qgdwdzulwwhqlqwrwkhvwdwxvuhjlvwhuzlooqrwfkdqjhwkh 72 ru3)dj ,q dgglwlrq rshudwlrqv uhodwhg wr wkh vwdwxv uhjlvwhu pd jlyh gliihuhqw uhvxowv gxh wr wkh gliihuhqw lqvwuxfwlrq rshudwlrqv 7kh 72 dj fdq eh diihfwhg rqo e d vvwhp srzhuxs d :7 wlphrxw ru e h[hfxwlqj wkh &/5 :7 ru +/7 lqvwuxfwlrq 7kh 3) dj lv diihfwhg rqo e h[hfxwlqj wkh +/7ru&/5 :7lqvwuxfwlrqrugxulqjdvvwhp srzhuxs 7kh= 29 &dqg&djvjhqhudoouhhfwwkhvwdwxvriwkhodwhvwrshudwlrqv ,q dgglwlrq rq hqwhulqj dq lqwhuuxsw vhtxhqfh ru h[hfxwlqj d vxeurxwlqh fdoo wkh vwdwxv uhjlvwhu zloo qrw eh sxvkhg rqwr wkh vwdfn dxwrpdwlfdoo ,i wkh frqwhqwv ri wkh vwdwxv uhjlvwhuv duh lpsruwdqw dqg li wkh lqwhuuxsw urxwlqh fdq fkdqjh wkh vwdwxv uhjlvwhu suhfdxwlrqv pxvw eh wdnhq wr fruuhfwo vdyh lw 1rwhwkdwelwvariwkh 67786uhjlvwhuduherwkuhdgdeohdqgzulwhdeohelwv

 rev. 1.10 ?8 ?a? 0?? ?01? rev. 1.10 ?9 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu input/output ports and control registers within 	 the	 area	 of	 special 	 function 	 registers, 	 the	 port	 pa, 	 pb, 	 etc	 data	 i/o 	 registers 	 and	 their 	 associated 	 control	 register	 pac, 	 pbc,	 etc 	 play 	 a	 prominent 	 role.	 these	 registers 	 are	 mapped 	 to 	 specific	 addresses	 within	 the	 data	 memory	 as	 shown	 in	 the	 data	 memory	 table.	 the	 data	 i/o 	 registers,	 are	 used	 to	 transfer	 the	 appropriate	 output	 or	 input	 data	 on	 the	 port.	 the	 control	 registers	 specifes	 which	 pins	 of	 the	 port	 are	 set	 as	 inputs	 and	 which	 are	 set	 as	 outputs.	 to 	 setup	 a	 pin	 as	 an	 input,	 the	 corresponding	 bit	 of	 the	 control	 register	 must	 be	 set	 high,	 for	 an	 output	 it	 must	 be	 set	 low. 	 during	 program	 initialisation,	 it	 is	 important	 to	 first	 setup	 the	 control	 registers	 to	 specify	 which 	 pins	 are	 outputs	 and	 which	 are	 inputs	 before	 reading	 data	 from	 or	 writing	 data	 to	 the	 i/o	 ports.	 one	 fexible	 feature	 of	 these	 registers	 is	 the	 ability	 to	 directly	 program	 single	 bits	 using	 the	 "set 	 [m].i"	 and	 "clr	 [m].i"	 instructions.	 the	 ability	 to	 change	 i/o	 pins	 from	 output	 to	 input	 and	 vice	 versa	 by	 manipulating	 specifc	 bits	 of	 the	 i/o	 control	 registers	 during	 normal	 program	 operation	 is	 a	 useful 	 feature	of	these	devices. ?	 status register bit 7 6 5 4 3 2 1 0 name to pdf ov z ac c r/w r r r/w r/w r/w r/w por 0 0 x x x x "x" unknown bit	 7,6	 unimplemented,	read	as	"0" bit	5	 to :	 watchdog 	 time-out 	fag 	 		0:	 after	power	up	or	executing	the	"clr	 wdt"	or	 "halt"	instruction 	 		1:	 a 	watchdog	time-out	occured. bit	 4	 	 pdf :	power	down	fag 	 	 	 		0:	 after	power	up	or	executing	the	"clr	 wdt"	instruction 	 	 	 		1:	by	executing	the	 "halt"	instruction bit	3	 ov :	overfow	fag 	 		0:	no	overfow 	 		1:	an	operation	results	in	a	carry	into	the	highest-order	bit	but	not	a	carry	out	of	the	 highest-order	bit	or	vice	versa. bit	2	 z :	zero	fag 	 		0:	 the	result	of	an	arithmetic	or	logical	operation	is	not	zero 	 		1:	 the	result	of	an	arithmetic	or	logical	operation	is	not	zero bit	1	 ac :	 auxiliary	fag 	 		0:	no	auxiliary	carry 	 		1:	an	operation	results	in	a	carry	out	of	the	low	nibbles	in	addition,	or	no	borrow	 from	the	high	nibble	into	the	low	nibble	in	subtraction bit	0	 c :	carry	fag 	 		0:	no	carry-out 	 		1:	an	operation	results	in	a	carry	during	an	addition	operation	or	if	a	borrow	does	 not	take	place	during	a	subtraction	operation 	 c	is	also	 affected	by	a	rotate	through	carry	instruction.

 rev. 1.10 30 ?a? 0?? ?01? rev. 1.10 31 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu system control registers C ctrl0, ctrl1, ctrl2 these	 registers	 are	 used	 to	 provide	 control	 over	 various	 internal	 functions.	 some	 of	 these	 include 	 the	 pfd	 control,	 pwm	 control,	 certain 	 system	 clock	 options,	 the	 lxt 	 oscillator	 low	 power	 control,	 external	 interrupt	 edge	 trigger	 type,	 watchdog 	 timer 	 enable	 function,	 time 	 base	 function	 division	 ratio,	and	the	lxt 	oscillator	enable	control. ?	 ctrl0 register bit 7 6 5 4 3 2 1 0 name pcfg pfdcs pw?sel pw?c1 pw?c0 pfdc lxtlp clk?od r/w r/w r/w r/w r/w r/w r/w r/w r/w por 0 0 0 0 0 0 0 0 bit	7	 pcfg :	i/o	confguration 	 		0:	(pwm0/tc1)/int/pfd	pin-shared	with	 pa4/pa3/pa1 	 		1:	(pwm0/tc1)/int/pfd	pin-shared	with	pb5/pb4/pb3 bit	6	 pfdcs :	pfd	clock	source 	 		0:	timer0 	 		1:	timer1 bit	5	 pwmsel :	pwm	type	selection 	 		0:	6+2 	 		1:	7+1 bit	4	 pwmc1 :	i/o	or	pwm1 	 		0:	i/o 	 		1:	pwm1 bit	3	 pwmc0 :	i/o	or	pwm0 	 		0:	i/o 	 		1:	pwm0 bit	2	 pfdc :	i/o	or	pfd 	 		0:	i/o 	 		1:	pfd bit	1	 lxtlp :	lxt 	oscillator	low	power	control	function 	 		0:	lxt 	oscillator	quick	start-up	mode 	 		1:	lxt 	oscillator	low	power	mode bit	0	 clkmod :	system	clock	mode	selection. 	 		0:	high	speed	system	clock 	 		1:	lxt 	system	clock,	high	speed	oscillator	stopped 	 note:	if	pwm0/1/2/3	output	is	selected	by	pwmc0/1/2/3	bit,	f tp 	comes	always	from 	 .	(f tp 	is	the	clock	source	for	timer0,	time	base	and	pwm)

 rev. 1.10 30 ?a? 0?? ?01? rev. 1.10 31 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? ctrl1 register bit 7 6 5 4 3 2 1 0 name integ1 integ0 tbsel1 tbsel0 wdten3 wdten? wdten1 wdten0 r/w r/w r/w r/w r/w r/w r/w r/w r/w por 1 0 0 0 1 0 1 0 b i1 i dss d id d bs1 bs ds i 11 i i i d d d1 d id d yd dyd i d d d s d dd d d 11 dy ii 1 d dsd d 11 d dsd 11 ? ctrl2 register bit 7 6 5 4 3 2 1 0 name dacen pw?c3 pw?c? lxten r/w r/w r/w r/w r/w por 0 0 0 1 %lw da cen '&glvdeohhqdeohfrqwuro glvdeoh hqdeoh %lw xqlpsohphqwhguhdgdv %lw pw?c3 ??ru3:0frqwuro ?? 3:0rxwsxw %lw pw?c? ??ru3:0frqwuro ?? 3:0rxwsxw %lw a xqlpsohphqwhguhdgdv %lw lxten /7 ?vfloodwru rqriifrqwurodiwhuh[hfxwlrqri +/7 lqvwuxfwlrq /7 riilq?goh0rgh /7 rqlq?gohprgh

 rev. 1.10 3? ?a? 0?? ?01? rev. 1.10 33 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu wake-up function register C pawk when	 the	 microcontroller	 enters	 the	 idle/sleep	 mode,	 various	 methods	 exist	 to	 wake	 the	 device	 up	 and	 continue 	 with	 normal	 operation. 	 one	 method	 is	 to	 allow	 a	 falling	 edge	 on	 the	 i/o	 pins	 to	 have	 a	 wake-up	 function.	 this	 register	 is	 used	 to	 select	 which	 port	 a 	 i/o	 pins	 are	 used	 to	 have	 this	 wake-up	 function. pull-high registers C papu, pbpu, pcpu, pdpu, pepu, pfpu the	 i/o	 pins,	 if	 confgured	 as	 inputs,	 can	 have	 internal	 pull-high	 resistors	 connected,	 which	 eliminates	 the	 need	 for	 external	 pull-high	 resistors.	 this	 register	 selects	 which	 i/o	 pins	 are	 connected	 to	 internal	 pull-high	resistors. software com register C scomc the 	 pins 	 pb0~pb3	 on	 port 	 b	 can 	 be 	 used 	 as 	 scom	 lines 	 to 	 drive 	 an 	 external 	 lcd 	 panel. 	 to 	 implement 	 this	 function, 	 the 	scomc	 register	 is	 used	 to 	 setup 	 the 	 correct 	 bias	 voltages	on 	 these 	 pins. oscillator various 	 oscillator	 options	 offer 	 the	 user	 a	 wide	 range	 of	 functions	 according	 to	 their	 various 	 application	 requirements.	 the	 flexible	 features	 of	 the	 oscillator	 functions	 ensure	 that	 the	 best 	 optimisation	can	be	achieved 	 in	terms	of	speed	and	power	saving.	oscillator	selections	and	operation 	 are	selected	through	a	combination	of	confguration	options	and	registers. system oscillator overview in	 addition 	 to	 being	 the	 source	 of	 the	 main	 system	 clock	 the	 oscillators	 also	 provide	 clock	 sources	 for	 other	 functions	 such	 as	 the	 watchdog 	 timer, 	 timer/event 	 counter, 	 time 	 base	 etc.	 the	 system	 oscillator	 can	 be	 provided	 from	 a	 choice	 of	 three	 high	 speed	 oscillators,	 the	 hxt, 	 erc	 or	 hirc 	 oscillators, 	 or	 a 	 single 	 low 	 speed, 	 lxt 	 crystal 	 oscillator. 	 the 	 lirc 	 oscillator 	 is 	 used 	 only 	 as 	 a 	 watchdog 	 timer 	clock	source. type name freq. pins function external cr?stal hxt 400khz~1??hz osc1/ osc? high speed s?stem clock external rc erc 400khz~1??hz osc1 high speed s?stem clock internal highb speed rc hirc 4? 8 or 1??hz high speed s?stem clock external low speed cr?stal lxt 3?768hz xt1/ xt? low speed s?stem clock clock source for: watchdog ? time base? timer/event counters 0/1 clock/spi/spia internal low speed rc lirc 13khz watchdog timer clock

 rev. 1.10 3? ?a? 0?? ?01? rev. 1.10 33 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu external crystal/resonator oscillator C hxt the	 simple	 connection	 of	 a	 crystal	 across	 osc1	 and	 osc2	 will	 create	 the	 necessary	 phase	 shift	 and	 feedback	 for	 oscillation.	 however, 	 for	 some	 crystals	 and	 most	 resonator	 types,	 to	 ensure	 oscillation	 and	accurate	frequency	generation,	it	is	necessary	to	add	two	small	value	external	capacitors,	c1	and	 c2.	 the	 exact	 values	 of	 c1	 and	 c2	 should	 be	 selected	 in	 consultation 	 with	 the	 crystal	 or	 resonator	 manufacturer's	specifcation.

 	

 � ? ?
 ?? crystal/resonator oscillator hxt crystal oscillator c1 and c2 values crystal frequency c1 c2 1??hz 8pf 10pf 8?hz 8pf 10pf 4?hz 8pf 10pf 1?hz 100pf 100pf note: c1 and c? values are for guidance onl? . crystal recommended capacitor values external rc oscillator C erc using	 the	 erc	 oscillator	 only	 requires	 that	 a	 resistor, 	 with	 a	 value	 between	 24k	 and	 1.5m, 	 is	 connected	 between	 osc1	 and	 v dd ,	 and	 a	 capacitor	 is	 connected	 between	 osc	 and	 ground, 	 providing	 a	 low	 cost	 oscillator	 configuration.	 it	 is	 only	 the	 external	 resistor	 that	 determines	 the 	 oscillation 	 frequency; 	 the 	 external 	 capacitor 	 has	 no	 infuence 	 over 	 the 	 frequency 	 and 	 is 	 connected 	 for	 stability	 purposes	 only. 	 device	 trimming	 during	 the	 manufacturing	 process	 and	 the	 inclusion 	 of 	 internal 	 frequency 	 compensation 	 circuits 	 are 	 used 	 to 	 ensure 	 that 	 the 	 influence 	 of 	 the 	 power 	 supply	 voltage,	 temperature	 and	 process	 variations	 on	 the	 oscillation	 frequency	 are	 minimised.	 as	 a	 resistance/frequency	 reference	 point,	 it	 can	 be	 noted	 that	 with	 an	 external 	 120k	 resistor	 connected	 and	 with	 a	 5v 	 voltage	 power	 supply	 and	 temperature	 of	 25	 degrees,	 the	 oscillator	 will	 have	 a 	 frequency	 of	 4mhz	 within	 a	 tolerance	 of	 2%.	 here	 only	 the	 osc1	 pin	 is	 used,	 which	 is	 shared	 with	 i/o	pin	 pa6,	leaving	pin	 pa5	free	for	use	as	a	normal	i/o	pin. external rc oscillator erc

 rev. 1.10 34 ?a? 0?? ?01? rev. 1.10 35 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu internal rc oscillator C hirc the	 internal	 rc	 oscillator 	 is 	 a	 fully	 integrated	 system 	 oscillator 	 requiring	 no	 external	 components. 	 the	 internal	 rc	 oscillator	 has	 three	 fixed	 frequencies	 of	 either	 4mhz,	 8mhz	 or	 12mhz.	 device 	 trimming	 during	 the	 manufacturing	 process 	 and	 the	 inclusion	 of	 internal	 frequency	 compensation 	 circuits	 are	 used	 to	 ensure	 that	 the	 infuence	 of	 the	 power	 supply	 voltage,	 temperature	 and	 process 	 variations	 on	 the	 oscillation	 frequency	 are	 minimised.	 as	 a	 result,	 at	 a	 power	 supply	 of	 either	 3v 	 or	 5v 	 and	 at	 a	 temperature	 of	 25	 degrees,	 the	 fxed	 oscillation	 frequency	 of	 4mhz,	 8mhz	 or	 12mhz 	 will	 have	 a	 tolerance	 within	 2%.	 note	 that	 if	 this	 internal	 system	 clock	 option	 is	 selected,	 as	 it 	 requires	no	external	pins	for	its	operation,	i/o	pins	 pa5	and	 pa6	are	free	for	use	as	normal	i/o	pins.

 	 	 	 internal rc oscillator hirc external 32768hz crystal oscillator C lxt the	 lxt 	 oscillator 	 is	 used	 both	 as	 the	 slow	 system	 clock	 and	 also	 as	 a	 selectable	 source	 clock	 for	 some	 peripheral	 functions	 including 	 the	 watchdog 	 timer, 	 time 	 base,	 timer/event 	 counters	 and	 spi	 functions.	it	must	be	frst	enabled	using	a	confguration	option. to 	 select	 the	 lxt 	 oscillator	 to	 be	 the	 low	 speed	 system	 oscillator, 	 the	 clkmod	 bit	 in	 the	 ctrl0	 register	 should	 be	 set	 high.	 when	 a	 halt 	 instruction	 is	 executed,	 the	 system	 clock	 is	 stopped,	 but	 the	 lxten	 bit	 in	 the	 ctrl2	 register	 determines	 if	 the	 lxt 	 oscillator 	 continues	 running	 when	 the	 microcontroller	 powers	 down.	 setting	 the	 lxten	 bit	 high	 will	 enable	 the	 lxt 	 to	 keep	 running 	 after 	 a 	 halt 	 instruction 	 is 	 executed 	 and 	 enable 	 the 	 lxt 	 oscillator 	 to 	 remain 	 as 	 a 	 possible 	 clock 	 source	for	the	 watchdog 	 timer, 	the	 time-base 	and	the	 timer/event 	counter	0/1. the	 lxt 	 oscillator	 is	 implemented	 using	 a	 32768hz	 crystal	 connected 	 to	 pins	 xt1/xt2.	 however, 	 for	 some	 crystals	 and	 to	 ensure	 oscillation	 and	 accurate	 frequency	 generation,	 it	 is	 normally 	 necessary 	 to 	 add 	 two 	 small 	 value 	 external 	 capacitors, 	 c1 	 and 	 c2. 	 the 	 exact 	 values 	 of 	 c1 	 and 	 c2 	 should	 be	 selected	 in	 consultation	 with	 the	 crystal	 or	 resonator	 manufacturer	 specification.	 the 	 external	parallel	feedback	 resistor,	rp,	may	also	be	required.

 rev. 1.10 34 ?a? 0?? ?01? rev. 1.10 35 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	 	 	 � ? ? ???? - external lxt oscillator - hxt lxt oscillator c1 and c2 values crystal frequency c1 c2 3?768hz 8pf 10pf note: 1. c1 and c? values are for guidance onl? . ?. r p =5?~10? is recommended. 32768hz crystal recommended capacitor values lxt oscillator low power function the	 lxt 	 oscillator	 can	 function	 in	 one	 of	 two	 modes,	 the	 quick	 start	 mode	 and	 the	 low	 power 	 mode.	 the	mode	selection	is	executed	using	the	lxtlp 	bit	in	the	ctrl0	 register. lxtlp bit lxt mode 0 quick start 1 low-power after	 power	 on	 the	 lxtlp 	 bit	 will	 be	 automatically	 cleared	 to	 zero	 ensuring	 that	 the	 lxt 	 oscillator	 is	 in	 the	 quick	 start	 operating	 mode.	 in	 the	 quick	 start	 mode	 the	 lxt 	 oscillator	 will	 power	 up 	 and	 stabilise	 quickly. 	 however, 	 after	 the	 lxt 	 oscillator	 has	 fully	 powered	 up	 it	 can	 be	 placed 	 into 	 the 	 low-power 	 mode 	 by 	 setting 	 the 	 lxtlp 	 bit 	 high. 	 the 	 oscillator 	 will 	 continue 	 to 	 run 	 but 	 with	 reduced	 current	 consumption,	 as	 the	 higher	 current	 consumption	 is	 only	 required	 during	 the 	 lxt 	 oscillator	 start-up.	 in	 power	 sensitive	 applications,	 such	 as	 battery	 applications,	 where	 power	 consumption	 must	 be	 kept	 to	 a	 minimum,	 it	 is	 therefore	 recommended	 that	 the	 application	 program	 sets	the	lxtlp 	bit	high	about	2	seconds	after	 power-on. it 	 should 	 be 	 noted 	 that, 	 no 	 matter 	 what 	 condition 	 the 	 lxtlp 	 bit 	 is 	 set 	 to, 	 the 	 lxt 	 oscillator 	 will 	 always	 function	 normally, 	 the	 only	 difference 	 is 		 that	 it	 will	 take	 more	 time	 to	 start	 up	 if	 in	 the	 low- power	mode. internal low speed oscillator C lirc the	 lirc	 is	 a	 fully	 self-contained	 free	 running	 on-chip	 rc	 oscillator	 with	 a	 typical	 frequency 	 of	 13khz 	 at 	 5v 	 requiring 	 no	 external 	 components. 	 when 	 the 	 device 	 enters 	 the 	 idle/sleep 	 mode, 	 the	 system	 clock	 will	 stop	 running	 but	 the	 wdt 	 oscillator	 continues	 to	 free-run	 and	 to	 keep	 the 	 watchdog	 active.	 however, 	 to	 preserve	 power	 in	 certain	 applications	 the	 lirc	 can	 be	 disabled	 via	 a	 confguration	option.

 rev. 1.10 36 ?a? 0?? ?01? rev. 1.10 37 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu operating modes by	 using	 the	 lxt 	 low	 frequency	 oscillator	 in	 combination	 with	 a	 high	 frequency	 oscillator, 	 the 	 system	 can	 be	 selected	 to	 operate	 in	 a	 number	 of	 different 	 modes.	 these	 modes	 are	 normal,	 slow, 	 idle	and	sleep. mode types and selection the 	 higher 	 frequency 	 oscillators 	 provide 	 higher 	 performance 	 but 	 carry 	 with 	 it 	 the 	 disadvantage 	 of 	 higher	 power	 requirements,	 while	 the	 opposite	 is	 of	 course	 true	 for	 the	 lower	 frequency	 oscillators.	 with 	 the	 capability	 of	 dynamically	 switching	 between	 fast	 and	 slow	 oscillators,	 the	 device	 has	 the	 fexibility	 to	 optimise 	 the	 performance/power	 ratio,	 a	 feature	 especially 	 important	 in	 power	 sensitive	 portable	applications. for	 these	 devices	 the	 lxt 	 oscillator	 can	 run	 together	 with	 any	 of	 the	 high	 speed	 oscillators,	 namely	 the	 hxt, 	 erc	 or	 the	 hirc.	 the	 clkmod	 bit	 in	 the	 ctrl0	 register	 can	 be	 used	 to	 switch	 the 	 system 	 clock 	 from 	 the 	 selected 	 high 	 speed 	 oscillator 	 to 	 the 	 low 	 speed 	 lxt 	 oscillator. 	 when 	 the 	 halt 	 instruction	 is	 executed	 the	 lxt 	 oscillator	 can	 be	 chosen	 to	 run	 or	 not	 using	 the	 lxten	 bit	 in	 the	ctrl2	 register.

	
 	

 	

	 �?� �?� ??
 ? ?? � 	 	

�
 	
	 ? - 	
 	 �??� ? ?? �
 	 6\vwhp&orfn&rq?jxudwlrqv for	all	devices,	when	the	system	enters	the	sleep	or	idle	mode,	the	high	frequency	system	clock	will 	 always 	 stop 	 running. 	 the 	 accompanying 	 tables 	 shows	 the 	 relationship 	 between 	 the 	 clkmod 	 bit, 	 the	 halt 	 instruction 	 and	 the	 high/low 	 frequency	 oscillators.	 the	 clmod	 bit	 can	 change	 normal	 or	 slow	mode. ?	 operating mode control halt instruction clkmod bit lxten bit high speed system clock xtal/irc/erc low speed system clock lxt operating mode not executed 0 x run on normal 1 x stop on slow executed x 1 stop on idle x 0 stop off sleep

 rev. 1.10 36 ?a? 0?? ?01? rev. 1.10 37 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu mode switching the	 devices	 are	 switched	 between	 one	 mode	 and	 another	 using	 a	 combination	 of	 the	 clkmod	 bit	 in	 the	 ctrl0	 register	 and	 the	 halt 	 instruction.	 the	 clkmod	 bit	 chooses	 whether	 the	 system 	 runs	 in 	 either 		 the 	 normal 	 or	 slow	 mode 	 by	 selecting 	 the 	 system 	 clock 	 to 	 be 	 sourced 	 from 	 either 	 a 	 high 	 or 	 low 	 frequency 	 oscillator. 	 the 	 halt 	 instruction 	 forces 	 the 	 system 	 into 	 either 	 the 	 idle 	 or 	 sleep	 mode,	 depending	 upon	 whether	 the	 lxt 	 oscillator	 is	 running	 or	 not.	 the	 halt 		 instruction	 operates	independently	of	the	clkmod	bit	condition. when	 a	 halt 	 instruction	 is	 executed	 and	 the	 lxt 	 oscillator	 is	 not	 running,	 the	 system	 enters	 the	 sleep	mode	the	following	conditions	exist: ?	 the	system	oscillator	will	stop	running	and	the	application	program	will	stop	at	the	 "halt"	 instruction. ?	 the	data	memory	contents	and	registers	will	maintain	their	present	condition. ?	 the	 wdt 	will	be	cleared	and	resume	counting	if	the	 wdt 	clock	source	is	selected	to	come	from	 the	lirc	 oscillator.	 the	 wdt 	will	stop	if	its	clock	source	originates	from	the	system	clock. ?	 the	i/o	ports	will	maintain	their	present	condition. ?	 in	the	status	 register,	the	power	down	fag,	 pdf,	will	be	set	and	the	 watchdog 	time-out	fag,	 to, 	 will	be	cleared. standby current considerations as	 the	 main	 reason	 for	 entering	 the	 idle/sleep	 mode	 is	 to	 keep	 the	 current	 consumption	 of	 the 	 mcu	 to	 as	 low	 a	 value	 as	 possible,	 perhaps	 only	 in	 the	 order	 of	 several	 micro-amps,	 there	 are 	 other	 considerations 	 which 	 must 	 also 	 be	 taken 	 into 	 account 	 by	 the 	 circuit 	 designer 	 if 	 the 	 power 	 consumption	is	to	be	minimised. special 	 attention 	 must 	 be 	 made 	 to 	 the 	 i/o 	 pins 	 on 	 the 	 device. 	 all 	 high-impedance 	 input 	 pins 	 must 	 be	 connected	 to	 either	 a	 fixed	 high	 or	 low	 level	 as	 any	 floating	 input	 pins	 could	 create	 internal 	 oscillations	 and	 result	 in	 increased	 current	 consumption.	 care	 must	 also	 be	 taken	 with	 the	 loads, 	 which	 are	 connected	 to	 i/o	 pins,	 which	 are	 setup	 as	 outputs.	 these	 should	 be	 placed	 in	 a	 condition	 in	 which	 minimum 	 current	 is	 drawn	 or	 connected	 only	 to	 external	 circuits	 that	 do	 not	 draw	 current,	 such	as	other	cmos	inputs. if	 the 	 configuration 	 options 	 have 	 enabled 	 the 	 watchdog 	 timer 	 internal 	 oscillator 	 lirc 	 then 	 this 	 will	 continue	 to	 run	 when	 in	 the	 idle/sleep	 mode	 and	 will	 thus	 consume	 some	 power. 	 for	 power 	 sensitive	 applications 	 it	 may	 be	 therefore	 preferable	 to	 use	 the	 system	 clock	 source	 for	 the	 watchdog 	 timer. 	 the	 lxt, 	 if	 confgured	 for	 use,	 will	 also	 consume	 a	 limited	 amount	 of	 power, 	 as	 it	 continues	 to	 run	 when	 the	 device	 enters	 the	 idle	 mode.	 to 	 keep	 the	 lxt 	 power	 consumption	 to	 a	 minimum	 level	 the	 lxtlp 	 bit	 in	 the	 ctrl0	 register, 	 which	 controls	 the	 low	 power	 function,	 should	 be	 set 	 high.

 rev. 1.10 38 ?a? 0?? ?01? rev. 1.10 39 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu wake-up after	 the	 system	 enters	 the	 idle/sleep	 mode,	 it	 can	 be	 woken	 up	 from	 one	 of	 various	 sources	 listed	 as	follows: ?	 an	external	reset ?	 an	external	falling	edge	on	 pa0	to	 pa7 ?	 a 	system	interrupt ?	 a 	 wdt 	overfow if	 the	 system	 is	 woken	 up	 by	 an	 external	 reset,	 the	 device	 will	 experience	 a	 full	 system	 reset, 	 however, 	 if	 the	 device	 is	 woken	 up	 by	 a	 wdt 	 overfow, 	 a	 watchdog 	 timer 	 reset	 will	 be	 initiated.	 although	 both	 of	 these	 wake-up	 methods	 will	 initiate	 a	 reset	 operation,	 the	 actual	 source	 of	 the 	 wake-up	 can	 be	 determined	 by	 examining	 the	 to 	 and	 pdf	 flags.	 the	 pdf	 flag	 is	 cleared	 by	 a 	 system	 power-up 	 or	 executing	 the	 clear	 watchdog 	 timer 	 instructions	 and	 is	 set	 when	 executing	 the	 "halt" 	 instruction. 	 the	 to 	 fag	 is	 set	 if	 a	 wdt 	 time-out	 occurs,	 and	 causes	 a	 wake-up	 that	 only	 resets	the	program	counter	and	stack	 pointer,	the	other	fags	remain	in	their	original	status. pins	 pa0 	 to	 pa7 	 can	 be	 setup	 via	 the	 pawuk 	 register	 to	 permit	 a	 negative	 transition	 on	 the	 pin	 to 	 wake-up	 the	 system.	 when	 a	 pa0 	 to	 pa7 	 pin	 wake-up	 occurs,	 the	 program	 will	 resume	 execution	 at	 the	 instruction	following	the	 "halt"	instruction. if	 the	 system	 is	 woken	 up	 by	 an	 interrupt, 	 then	 two	 possible	 situations	 may	 occur. 	 the	 frst	 is	 where	 the	 related	 interrupt	 is	 disabled	 or	 the	 interrupt	 is	 enabled	 but	 the	 stack	 is	 full,	 in	 which	 case	 the 	 program	 will	 resume	 execution	 at	 the	 instruction	 following	 the	 "halt" 	 instruction.	 in	 this	 situation,	 the	 interrupt	 which	 woke-up	 the	 device	 will	 not	 be	 immediately	 serviced, 	 but	 will	 rather	 be	 serviced	 later 	 when 	 the 	 related 	 interrupt 	 is 	 finally 	 enabled 	 or 	 when 	 a 	 stack 	 level 	 becomes 	 free. 	 the 	 other 	 situation	 is	 where	 the	 related	 interrupt	 is	 enabled	 and	 the	 stack	 is	 not	 full,	 in	 which	 case	 the	 regular	 interrupt	 response	 takes	 place.	 if	 an	 interrupt	 request	 fag	 is	 set	 to	 "1"	 before	 entering	 the	 idle/sleep	 mode,	 then	 any	 future	 interrupt	 requests	 will	 not	 generate	 a	 wake-up	 function	 of	 the	 related	interrupt	 will	be	ignored. no 	 matter 	 what 	 the 	 source 	 of 	 the 	 wake-up 	 event 	 is, 	 once 	 a 	 wake-up 	 event 	 occurs, 	 there 	 will 	 be 	 a 	 time	delay	before	normal	program	execution	resumes.	consult	the	table	for	the	related	time. wake-up source oscillator type erc, irc crystal external res t rsdt + t sst1 t rsdt + t sst? pa port t sst1 t sst? interrupt :'7?yhurz note:	1.	t rstd 	(reset	delay	time),	t sys 	(system	clock) 	 2.	t rstd 	is	 power-on	 delay,	typical	time=100ms 	 3.	t sst1 =	2	or	128	t sys	 4.	t sst2 =	128	t sys wake-up delay time 	

 rev. 1.10 38 ?a? 0?? ?01? rev. 1.10 39 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu watchdog timer the	 watchdog 	 timer, 	 also	 known	 as	 the	 wdt, 	 is	 provided	 to	 inhibit	 program	 malfunctions	 caused	 by	 the	 program	 jumping	 to	 unknown	 locations	 due	 to	 certain	 uncontrollable	 external	 events	 such	 as	 electrical	noise.	 watchdog timer operation it	 operates 	 by	 providing	 a	 device	 reset	 when	 the	 watchdog 	 timer 	 counter	 overfows.	 note	 that	 if	 the	 watchdog 	 timer 	 function 	 is 	 not 	 enabled, 	 then 	 any 	 instructions 	 related 	 to 	 the 	 watchdog 	 timer 	 will 	 result	in	no	operation. setting	 up	 the	 various	 watchdog 	 timer 	 options	 are	 controlled	 via	 the	 confguration	 options	 and	 two	 internal	 registers	 wdts	 and	 ctrl1.	 enabling	 the	 watchdog 	 timer 	 can	 be	 controlled	 by	 both	 a 	 confguration	option	and	the	 wdten	bits	in	the	ctrl1	internal	register	in	the	data	 memory. confguration	option ctrl1 register wdt function disable disable off disable enable on enable x on watchdog timer on/off control the	 watchdog 	 timer 	 will	 be	 disabled	 if	 bits	 wdten3~wdten0	 in	 the	 ctrl1	 register	 are	 written	 with 	 the 	 binary 	 value 	 1010b 	 and 	 wdt 	 confguration 	 option 	 is 	 disable. 	 this 	 will 	 be 	 the 	 condition 	 when	 the	 device	 is	 powered	 up.	 although	 any	 other	 data	 written	 to	 wdten3~wdten0	 will	 ensure	 that	 the	 watchdog 	 timer 	 is	 enabled,	 for	 maximum	 protection	 it	 is	 recommended	 that	 the	 value 	 0101b	is	written	to	these	bits. the 	 watchdog 	 timer 	 clock 	 can 	 emanate 	 from 	 three 	 different 	 sources, 	 selected 	 by 	 configuration 	 option.	 these	 are	 lxt, 	 f sys /4,	 or	 lirc.	 it	 is	 important	 to	 note	 that	 when	 the	 system	 enters	 the	 idle/ sleep 	 mode 	 the 	 instruction 	 clock 	 is 	 stopped, 	 therefore 	 if 	 the 	 configuration 	 options 	 have 	 selected 	 f sys /4	 as	 the	 watchdog 	 timer 	 clock 	 source,	 the	 watchdog 	 timer 	 will	 cease	 to	 function.	 for	 systems	 that 	 operate 	 in 	 noisy 	 environments, 	 using 	 the 	 lirc 	 or 	 the 		 lxt 	 as 	 the 	 clock 	 source 	 is 	 therefore 	 the 	 recommended 	 choice. 	 the 	 division 	 ratio 	 of	 the 	 prescaler 	 is 	 determined 	 by 	 bits 	 0,	 1	 and 	 2	 of 	 the 	 wdts 	 register, 	 known 	 as 	 ws0, 	 ws1 	 and 	 ws2. 	 if 	 the 	 watchdog 	 timer 	 internal 	 clock 	 source 	 is 	 selected 	 and 	 with 	 the 	 ws0, 	 ws1 	 and 	 ws2 	 bits 	 of 	 the 	 wdts 	 register 	 all 	 set 	 high, 	 the 	 prescaler 	 division	ratio	will	be	1:128,	which	will	give	a	maximum	time-out	period. under 	 normal 	 program 	 operation, 	 a 	 watchdog 	 timer 	 time-out 	 will 	 initialise 	 a 	 device 	 reset 	 and 	 set 	 the	 status	 bit	 to. 	 however, 	 if	 the	 system	 is	 in	 the	 idle/sleep	 mode,	 when	 a	 watchdog 	 timer 	 time- out 	 occurs, 	 the 	 device 	 will 	 be 	 woken 	 up, 	 the 	 to 	 bit 	 in 	 the 	 status 	 register 	 will 	 be 	 set 	 and 	 only 	 the 	 program 	 counter 	 and 	 stack 	 pointer 	 will 	 be 	 reset. 	 three 	 methods 	 can 	 be 	 adopted 	 to 	 clear 	 the 	 contents 	 of	 the	 watchdog 	 timer. 	 the	 first	 is	 an	 external	 hardware	 reset,	 which	 means	 a	 low	 level	 on	 the 	 external	 reset	 pin,	 the	 second	 is	 using	 the	 clear	 watchdog 	 timer 	 software	 instructions	 and	 the	 third	 is	 when	 a	 halt 	 instruction	 is	 executed.	 there	 are	 two	 methods	 of	 using	 software	 instructions	 to 	 clear	 the	 watchdog 	 timer, 	 one	 of	 which	 must	 be	 chosen	 by	 confguration	 option.	 the	 frst	 option 	 is	 to	 use	 the	 single	 "clr	 wdt"	 instruction	 while	 the	 second	 is	 to	 use	 the	 two	 commands	 "clr 	 wdt1"	 and	 "clr	 wdt2".	 for	 the	 frst	 option,	 a	 simple	 execution	 of	 "clr	 wdt"	 will	 clear	 the	 watchdog 	 timer 	 while 	 for	 the	 second 	 option,	 both	 "clr 	 wdt1" 	 and	 "clr 	 wdt2" 	 must 	 both 	 be	 executed	 to	 successfully	 clear	 the	 watchdog 	 timer. 	 note	 that	 for	 this	 second	 option,	 if	 "clr 	 wdt1"	 is	 used	 to	 clear	 the	 watchdog 	 timer, 	 successive	 executions	 of	 this	 instruction	 will	 have	 no	 effect, 	 only	 the	 execution	 of	 a	 "clr	 wdt2"	 instruction	 will	 clear	 the	 watchdog 	 timer. 	 similarly 	 after	 the	 "clr	 wdt2"	 instruction	 has	 been	 executed,	 only	 a	 successive	 "clr	 wdt1"	 instruction	 can	clear	the	 watchdog 	 timer.

 rev. 1.10 40 ?a? 0?? ?01? rev. 1.10 41 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	 � ? ? � ? ? ? � ? ? ?? � ?? � - ? watchdog timer ? wdts register bit 7 6 5 4 3 2 1 0 name ws? ws1 ws0 r/w r/w r/w r/w por 1 1 1 %lwa xqlpsohphqwhguhdgdv %lwa ws2, ws1, ws0 :7 wlphrxwshulrgvhohfwlr 8 w :7 w :7 w :7 11 w :7 w :7 w :7 w :7 w :7 reset and initialisation uhvhw ixqfwlrq lv d ixqgdphqwdo sduw ri dq plfurfr qwuroohu hqvxulqj wkdw wkh ghylfh fdq eh vhw wr vrph suhghwhuplqhg frqglwlrq luuhvshfwlyh ri rxwvlgh sdudphwhuv 7kh prvw lpsruwdqw uhvhw frqglwlrq lv diwhu srzhu lv uvw dssolhg wr wkh plfurfrqwuroohu ,q wklv fdvh lqwhuqdo flufxlwu zloo hqvxuh wkdw wkh plfurfrqwuroohu diwhu d vkruw ghod zloo eh lq d zhoo ghilqhg vwdwh dqg uhdg wr h[hfxwh wkh uvw surjudp lqvwuxfwlrq iwhu wklv srzhurq uhvhw fhuwdlq lpsruwdqw lqwhuqdo uhjlvwhuv zloo eh vhw wr ghqhg vwdwhv ehiruh wkh surjudp frpphqfhv 2qh ri wkhvh uhjlvwhuv lv wkh 3urjudp &rxqwhu zklfkzlooehuhvhwwr]huriruflqjwkhplfurfrqwuroohu wrehjlqsurjudph[hfxwlrq iurpwkh orzhvw3urjudp0hprudgguhvv ,q dgglwlrq wr wkh srzhurq uhvhw vlwxdwlrqv pd dulvh zkhuh lw lv qhfhvvdu wr irufhixoo dsso d uhvhw frqglwlrq zkhq wkh plfurfrqwuroohu lv uxqqlqj 2qh h[dpsoh ri wklv lv zkhuh diwhu srzhu kdv ehhq dssolhg dqg wkh plfurfrqwuroohu lv douhdg uxqqlqj wkh 5(6 olqh lv irufhixoo sxoohg orz ,q vxfk d fdvh nqrzq dv d qrupdo rshudwlrq uhvhw vrph ri wkh plfurfrqwuroohu uhjlvwhuv uhpdlq xqfkdqjhg doorzlqj wkh plfurfrqwuroohu wr surfhhg zlwk qrupdo rshudwlrq diwhu wkh uhvhw olqh lv doorzhg wr uhwxuq kljk qrwkhu wsh ri uhvhw lv zkhq wkh :dwfkgrj 7lphu ryhurzv dqg uhvhwv wkh plfurfrqwuroohu oowshvriuhvhwrshudwlrqvuhvxowlq gliihuhqwuhjlvwhufrqglwlrqvehlqjvhwxs qrwkhu uhvhw h[lvwv lq wkh irup ri d /rz 9rowdjh 5hvhw /95 zkhuh d ixoo uhvhw vlplodu wr wkh 5(6 uhvhwlvlpsohphqwhglqvlwxdwlrqvzkhuhwkhsrzhuvxssoyrowdjhidoovehorzdfhuwdlqwkuhvkrog

 rev. 1.10 40 ?a? 0?? ?01? rev. 1.10 41 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu reset functions there	 are	 five	 ways 	 in	 which 	 a	 microcontroller	 reset 	 can	 occur, 	 through	 events 	 occurring	 both 	 internally	and	externally: ?	 power-on 	reset the	 most	 fundamental	 and	 unavoidable	 reset	 is	 the	 one	 that	 occurs	 after 	 power	 is	 frst	 applied	 to	 the	 microcontroller.	 as	 well	as	ensuring	that	the	program	memory	begins	execution	 from	the	frst	 memory	 address,	 a	 power-on 	 reset	 also	 ensures	 that	 certain	 other	 registers	 are	 preset	 to	 known 	 conditions.	 all	 the	 i/o	 port	 and	 port	 control	 registers	 will	 power	 up	 in	 a	 high	 condition	 ensuring	 that	all	pins	will	be	frst	set	to	inputs. although	 the	 microcontroller 	 has	 an	 internal	 rc	 reset	 function,	 if	 the	 v dd 	 power	 supply	 rise	 time	 is	 not	 fast	 enough	 or	 does	 not	 stabilise	 quickly	 at	 power-on, 	 the	 internal	 reset	 function	 may	 be 	 incapable	 of	 providing	 proper	 reset	 operation.	 for	 this	 reason	 it	 is	 recommended	 that	 an	 external	 rc	 network	 is	 connected	 to	 the	 res 	 pin,	 whose	 additional	 time	 delay	 will	 ensure	 that	 the	 res 	 pin	 remains	low	for	an	extended	period	to	allow	the	power	supply	to	stabilise.	during	this	time	 delay,	 normal	 operation	 of	 the	 microcontroller 	 will 	 be	 inhibited. 	 after 	 the	 res 	 line 	 reaches 	 a	 certain 	 voltage 	 value, 	 the 	 reset 	 delay 	 time 	 t rstd 	 is 	 invoked 	 to 	 provide 	 an 	 extra 	 delay 	 time 	 after 	 which 	 the	 microcontroller	 will	 begin	 normal	 operation.	 the	 abbreviation	 sst 	 in	 the	 fgures	 stands	 for	 system	start-up	 timer.

 power-on reset timing chart note:	t rstd 	is	 power-on	 delay,	typical	time=100ms for	 most	 applications	 a	 resistor	 connected	 between	 v dd 	 and	 the	 res 	 pin	 and	 a	 capacitor	 connected	 between	 v ss 	 and	 the	 res 	 pin	 will	 provide	 a	 suitable	 external	 reset	 circuit.	 any	 wiring	 connected	 to	 the	 res 	pin	should	be	kept	as	short	as	possible	to	minimise	any	stray	noise	interference. for	 applications 	 that 	 operate 	 within 	 an	 environment 	 where	 more	 noise	 is	 present 	 the	 enhanced 	 reset	circuit	shown	is	recommended.
 external res circuit note:	"*"	it	is	recommended	that	this	component	is	added	esd	protection. 	 "**"	it	is	recommended	that	this	component	is	added	in	environments	where	power	line	noise	 is	signifcant.

 rev. 1.10 4? ?a? 0?? ?01? rev. 1.10 43 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu more	 information	 regarding	 external	 reset	 circuits	 is	 located	 in	 application	 note	 ha0075e	 on	 the	 holtek	website. ?	 res 	pin	reset this	 type	 of	 reset	 occurs	 when	 the	 microcontroller	 is	 already	 running	 and	 the	 res 	 pin	 is	 forcefully	 pulled	 low	 by	 external	 hardware	 such	 as	 an	 external	 switch.	 in	 this	 case	 as	 in	 the	 case	 of	 other 	 reset,	the	program	counter	will	reset	to	zero	and	program	execution	initiated	from	this	point.

 res reset timing chart note:	t rstd 	is	 power-on	 delay,	typical	time=100ms ?	 low	 voltage 	reset		 lvr the	 microcontroller 	 contains	 a	 low	 voltage	 reset	 circuit	 in	 order	 to	 monitor	 the	 supply	 voltage	 of	 the	 device.	 the	 lvr 	 function	 is	 selected	 via	 a	 confguration	 option.	 if	 the	 supply	 voltage	 of	 the	 device	 drops	 to	 within	 a	 range	 of	 0.9v~v lvr 	 such	 as	 might	 occur	 when	 changing	 the	 battery, 	 the	 lvr 	 will	 automatically 	 reset	 the	 device	 internally. 	 for	 a	 valid	 lvr 	 signal,	 a	 low	 supply	 voltage,	 i.e., 	 a 	 voltage 	 in 	 the 	 range 	 between 	 0.9v~v lvr 	 must 	 exist 	 for 	 a 	 time 	 greater 	 than 	 that 	 specifed 	 by	 t lvr 	 in	 the	 a.c.	 characteristics.	 if	 the	 low	 supply	 voltage	 state	 does	 not	 exceed	 this	 value,	 the	 lvr 	 will	 ignore	 the	 low	 supply	 voltage	 and	 will	 not	 perform	 a	 reset	 function.	 the	 actual	 v lvr 	 value	can	be	selected	via	confguration	options. low voltage reset timing chart note:	t rstd 	is	 power-on	 delay,	typical	time=100ms ?	 watchdog 	 time-out 	reset	during	normal	operation the	 watchdog 	 time-out	 reset	 during	 normal	 operation	 is	 the	 same	 as	 a	 hardware	 res 	 pin	 reset	 except	that	the	 watchdog 	time-out	fag	 to 	will	be	set	to	"1".
 wdt reset during normal operation timing chart note:	t rstd 	is	 power-on	 delay,	typical	time=100ms

 rev. 1.10 4? ?a? 0?? ?01? rev. 1.10 43 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ?	 watchdog 	 time-out 	reset	during	idle/sleep	mode the	 watchdog 	 time-out	 reset	 during	 idle/sleep	 mode	 is	 a	 little	 different 	 from	 other	 kinds	 of	 reset. 	 most	 of	 the	 conditions	 remain	 unchanged	 except	 that	 the	 program	 counter	 and	 the	 stack	 pointer	 will	 be	cleared	to	"0"	and	the	 to 	fag	will	be	set	to	"1".	refer	to	the	 a.c.	characteristics	for	t sst 	details.
 wdt time-out reset during idle/sleep timing chart note:	 the	t sst 	can	be	chosen	to	be	either	128	or	2	clock	cycles	if	the	system	clock	source	is	 provided	by	erc	or	hirc.	 the	sst 	is	128	clock	cycle	for	hxt 	or	 lxt.	it	is	described	in	 the	following	table: system clock source hirc erc hxt lxt none xt1/xt2 power on 1?8 hirc 1?8 hirc 1?8 erc 1?8 hxt normal ?ode wakeup ? hirc ? hirc ? erc 1?8 hxt slow ?ode wakeup x ? lxt x x sleep ?ode wakeup ? hirc 1?8 lxt ? erc 1?8 hxt reset initial conditions the	 different 	 types	 of	 reset	 described	 affect 	 the	 reset	 fags	 in	 different 	 ways.	 these	 fags,	 known 	 as 	 pdf 	 and	 to 	 are	 located	 in	 the	 status 	 register 	 and	 are	 controlled	 by	 various 	 microcontroller 	 operations,	 such 	 as 	 the	 idle/sleep 	 function	 or	 watchdog 	 timer. 	 the	 reset 	 flags	 are	 shown 	 in	 the 	 table: to pdf reset conditions 0 0 power-on reset u u res or lvr reset during normal or slow ?ode operation 1 u wdt time-out reset during normal or slow ?ode operation 1 1 wdt time-out reset during idle or sleep ?ode operation note:	"u"	stands	for	unchanged the	 following	 table	 indicates	 the	 way	 in	 which	 the	 various	 components	 of	 the	 microcontroller	 are 	 affected 	after	a	 power-on	reset	occurs. item condition after reset program counter reset to zero interrupts all interrupts will be disabled wdt clear after reset? wdt begins counting timer/event counter timer counter will be turned off prescaler the timer counter prescaler will be cleared input/output ports i/o ports will be setup as inputs stack pointer stack pointer will point to the top of the stack

 rev. 1.10 44 ?a? 0?? ?01? rev. 1.10 45 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu the	 different 	 kinds	 of	 resets	 all	 affect 	 the	 internal	 registers	 of	 the	 microcontroller 	 in	 different 	 ways.	 to 	 ensure	 reliable	 continuation	 of	 normal	 program	 execution	 after	 a	 reset	 occurs,	 it	 is	 important	 to	 know	 what	 condition	 the	 microcontroller	 is	 in	 after	 a	 particular	 reset	 occurs.	 the	 following	 table 	 describes	how	each	type	of	reset	 affects	each	of	the	microcontroller	internal	registers. register ht46r068b ht46r069b power-on reset res or lvr reset (normal operation) res or lvr reset (idle/sleep) wdt time-out (normal operation) wdt time-out (idle/sleep) pcl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ?p0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u ?p1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u bp C C 0 C C C 0 0 C C 0 C C C 0 0 C C 0 C C C 0 0 C C 0 C C C 0 0 C C u C C C u u bp C 0 0 C C 0 0 0 C 0 0 C C 0 0 0 C 0 0 C C 0 0 0 C 0 0 C C 0 0 0 C u u C C u u u acc x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u tblp x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u tblh x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u wdts C C C C C 1 1 1 C C C C C 1 1 1 C C C C C 1 1 1 C C C C C 1 1 1 C C C C C u u u status C C 0 0 x x x x C C u u u u u u C C 0 1 u u u u C C 1 u u u u u C C 1 1 u u u u intc0 C 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 C u u u u u u u intc1 C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C u u u C u u u ?fic C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C u u u C u u u t?r0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u t?r0c 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 u u u u u u u u t?r1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u t?r1c 0 0 0 0 1 C C C 0 0 0 0 1 C C C 0 0 0 0 1 C C C 0 0 0 0 1 C C C u u u u u C C C t?r?l x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u t?r?h x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u t?r?c 0 0 0 0 1 C C C 0 0 0 0 1 C C C 0 0 0 0 1 C C C 0 0 0 0 1 C C C u u u u u C C C pa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pawk 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u papu C 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 C u u u u u u u pb 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pbc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pbpu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u pc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pcc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pcpu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u pd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pdc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pdpu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u pe 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pec 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pepu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u pf 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pfc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pfpu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u pg C C C C C C 1 1 C C C C C C 1 1 C C C C C C 1 1 C C C C C C 1 1 C C C C C C u u pgc C C C C C C 1 1 C C C C C C 1 1 C C C C C C 1 1 C C C C C C 1 1 C C C C C C u u

 rev. 1.10 44 ?a? 0?? ?01? rev. 1.10 45 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu register ht46r068b ht46r069b power-on reset res or lvr reset (normal operation) res or lvr reset (idle/sleep) wdt time-out (normal operation) wdt time-out (idle/sleep) pgpu C C C C C C 0 0 C C C C C C 0 0 C C C C C C 0 0 C C C C C C 0 0 C C C C C C u u pg 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pgc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u pgpu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u ph C C 1 1 1 1 1 1 C C 1 1 1 1 1 1 C C 1 1 1 1 1 1 C C 1 1 1 1 1 1 C C u u u u u u phc C C 1 1 1 1 1 1 C C 1 1 1 1 1 1 C C 1 1 1 1 1 1 C C 1 1 1 1 1 1 C C u u u u u u phpu C C 0 0 0 0 0 0 C C 0 0 0 0 0 0 C C 0 0 0 0 0 0 C C 0 0 0 0 0 0 C C u u u u u u ctrl0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u ctrl1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 u u u u u u u u ctrl? 0 C 0 0 C C C 1 0 C 0 0 C C C 1 0 C 0 0 C C C 1 0 C 0 0 C C C 1 u C u u C C C u sco?c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u pw?0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u pw?1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u pw?? x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u pw?3 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u si?c0 1 1 1 0 0 0 0 C 1 1 1 0 0 0 0 C 1 1 1 0 0 0 0 C 1 1 1 0 0 0 0 C u u u u u u u C si?c1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 u u u u u u u u si?d x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u si?a/ si?c? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u spiac0 1 1 1 C C C 0 1 1 1 1 C C C 0 1 1 1 1 C C C 0 1 1 1 1 C C C 0 1 u u u u u u u u spiac1 C 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 u u u u u u u u spiad x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u dal 0 0 0 0 C C C C 0 0 0 0 C C C C 0 0 0 0 C C C C 0 0 0 0 C C C C u u u u C C C C dah 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u vol 0 0 0 0 C C C C 0 0 0 0 C C C C 0 0 0 0 C C C C 0 0 0 0 C C C C u u u u C C C C lvdc C C 0 0 C C C C C C 0 0 C C C C C C 0 0 C C C C C C 0 0 C C C C C C u u C C C C adrl x x x x C C C C x x x x C C C C x x x x C C C C x x x x C C C C u u u u C C C C adrh x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u adcr 0 1 C C 0 0 0 0 0 1 C C 0 0 0 0 0 1 C C 0 0 0 0 0 1 C C 0 0 0 0 u u C C u u u u acsr 1 1 C C 0 0 0 0 1 1 C C 0 0 0 0 1 1 C C 0 0 0 0 1 1 C C 0 0 0 0 u u C C u u u u ancsr0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u ancsr1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

 rev. 1.10 46 ?a? 0?? ?01? rev. 1.10 47 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu input/output ports holtek 	 microcontrollers 	 offer 	 considerable 	 fexibility 	 on 	 their 	 i/o 	 ports. 	 most 	 pins 	 can 	 have 	 either 	 an 	 input	 or	 output	 designation	 under	 user	 program	 control.	 additionally, 	 as	 there	 are	 pull-high	 resistors	 and	 wake-up	 software	 confgurations,	 the	 user	 is	 provided	 with	 an	 i/o	 structure	 to	 meet	 the	 needs	 of	 a	wide	range	of	application	possibilities. for	 input	 operation,	 these	 ports	 are	 non-latching,	 which	 means	 the	 inputs	 must	 be	 ready	 at	 the	 t2 	 rising	 edge	 of	 instruction	 "mov 	 a,[m]",	 where	 m	 denotes	 the	 port	 address.	 for	 output	 operation,	 all	 the	data	is	latched	and	remains	unchanged	until	the	output	latch	is	rewritten. pull-high resistors many	 product	 applications	 require	 pull-high	 resistors	 for	 their	 switch	 inputs	 usually	 requiring	 the	 use	 of	 an	 external	 resistor. 	 to 	 eliminate	 the	 need	 for	 these	 external	 resistors,	 when	 confgured	 as	 an	 input	 have	 the	 capability	 of	 being	 connected	 to	 an	 internal	 pull-high	 resistor. 	 these	 pull-high	 resistors	 are 	 selectable	 via	 a	 register	 known	 as	 papu, 	 pbpu,	 pcpu,	 pdpu,	 pepu	 and	 pfpu	 located	 in	 the	 data	 memory. 	 the 	 pull-high 	 resistors 	 are 	 implemented 	 using 	 weak 	 pmos	 transistors. 	 note 	 that 	 pin 	 pa7 	 does	not	have	a	pull-high	resistor	selection. port a wake-up if	 the	 halt 	 instruction 	 is 	 executed,	 the	 device	 will 	 enter	 the	 idle/sleep 	 mode, 	 where 	 the	 system 	 clock	 will	 stop	 resulting	 in	 power	 being	 conserved,	 a	 feature	 that	 is	 important	 for	 battery	 and	 other	 low-power	applications.	 various 	 methods	 exist	 to	 wake-up	 the	 microcontroller, 	 one	 of	 which	 is	 to	 change	 the	 logic	 condition	 on	 one	 of	 the	 pa0~pa7 	 pins	 from	 high	 to	 low. 	 after	 a	 halt 	 instruction 	 forces	 the	 microcontroller	 into	 entering	 the	 idle/sleep	 mode,	 the	 processor	 will	 remain	 idle	 or	 in	 a	 low-power	 state	 until	 the 	 logic	 condition	 of	 the	 selected	 wake-up	 pin	 on	 port	 a 	 changes	 from	 high	 to	 low. 	 this	 function	 is 	 especially	 suitable 	 for	 applications	 that	 can	 be	 woken	 up	 via	 external	 switches.	 note	 that	 pins	 pa0 	 to	 pa7 	 can	 be	 selected	 individually	 to	 have	 this	 wake-up	 feature	 using	 an	 internal	 register	 known	 as	 pawk, 	located	in	the	data	 memory.

 rev. 1.10 46 ?a? 0?? ?01? rev. 1.10 47 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu pawk, pac, papu, pbc, pbpu, pcc, pcpu, pdc, pdpu, pec, pepu, pfc, pfpu register ? ht46r068b register name por bit 7 6 5 4 3 2 1 0 pawk 00h pawk7 pawk6 pawk5 pawk4 pawk3 pawk ? pawk1 pawk0 pac ffh pac7 pac6 pac5 pac4 pac3 pac ? pac1 pac0 papu 00h papu6 papu5 papu4 papu3 papu ? papu1 papu0 pbc ffh pbc7 pbc6 pbc5 pbc4 pbc3 pbc? pbc1 pbc0 pbpu 00h pbpu7 pbpu6 pbpu5 pbpu4 pbpu3 pbpu? pbpu1 pbpu0 pcc ffh pcc7 pcc6 pcc5 pcc4 pcc3 pcc? pcc1 pcc0 pcpu 00h pcpu7 pcpu6 pcpu5 pcpu4 pcpu3 pcpu? pcpu1 pcpu0 pdc ffh pdc7 pdc6 pdc5 pdc4 pdc3 pdc? pdc1 pdc0 pdpu 00h pdpu7 pdpu6 pdpu5 pdpu4 pdpu3 pdpu? pdpu1 pdpu0 pec ffh pec7 pec6 pec5 pec4 pec3 pec? pec1 pec0 pepu 00h pepu7 pepu6 pepu5 pepu4 pepu3 pepu? pepu1 pepu0 pfc ffh pfc7 pfc6 pfc5 pfc4 pfc3 pfc? pfc1 pfc0 pfpu 00h pfpu7 pfpu6 pfpu5 pfpu4 pfpu3 pfpu? pfpu1 pfpu0 pgc ffh pgc1 pgc0 pgpu 00h pgpu1 pgpu0 8qlpsohphqwhguhdgdv pawkn 3 zdnhxsixfwlrhdeoh glvdeoh hdeoh pacn/pbcn/pccn/pdcn/pecn/pfcn/pgcn ,2wshvhohfwlr rxwsxw lsxw papun/pbpun/pcpun/pdpun/pepun/pfpun/pgpun 3xooklkixfwlrhdeoh glvdeoh hdeoh

 rev. 1.10 48 ?a? 0?? ?01? rev. 1.10 49 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? ht46r069b register name por bit 7 6 5 4 3 2 1 0 pawk 00h pawk7 pawk6 pawk5 pawk4 pawk3 pawk ? pawk1 pawk0 pac ffh pac7 pac6 pac5 pac4 pac3 pac ? pac1 pac0 papu 00h papu6 papu5 papu4 papu3 papu ? papu1 papu0 pbc ffh pbc7 pbc6 pbc5 pbc4 pbc3 pbc? pbc1 pbc0 pbpu 00h pbpu7 pbpu6 pbpu5 pbpu4 pbpu3 pbpu? pbpu1 pbpu0 pcc ffh pcc7 pcc6 pcc5 pcc4 pcc3 pcc? pcc1 pcc0 pcpu 00h pcpu7 pcpu6 pcpu5 pcpu4 pcpu3 pcpu? pcpu1 pcpu0 pdc ffh pdc7 pdc6 pdc5 pdc4 pdc3 pdc? pdc1 pdc0 pdpu 00h pdpu7 pdpu6 pdpu5 pdpu4 pdpu3 pdpu? pdpu1 pdpu0 pec ffh pec7 pec6 pec5 pec4 pec3 pec? pec1 pec0 pepu 00h pepu7 pepu6 pepu5 pepu4 pepu3 pepu? pepu1 pepu0 pfc ffh pfc7 pfc6 pfc5 pfc4 pfc3 pfc? pfc1 pfc0 pfpu 00h pfpu7 pfpu6 pfpu5 pfpu4 pfpu3 pfpu? pfpu1 pfpu0 pgc ffh pgc7 pgc6 pgc5 pgc4 pgc3 pgc? pgc1 pgc0 pgpu 00h pgpu7 pgpu6 pgpu5 pgpu4 pgpu3 pgpu? pgpu1 pgpu0 phc 3fh phc5 phc4 phc3 phc? phc1 phc0 phpu 00h phpu5 phpu4 phpu3 phpu? phpu1 phpu0 8qlpsohphqwhguhdgdv pawkn 3 zdnhxsixfwlrhdeoh glvdeoh hdeoh pacn/pbcn/pccn/pdcn/pecn/pfcn/pgcn/phcn ,2wshvhohfwlr rxwsxw lsxw papun/pbpun/pcpun/pdpun/pepun/pfpun/pgpun/phpun 3xooklkixfwlrhdeoh glvdeoh hdeoh i/o port control registers (dfk 3ruw kdv lwv rzq frqwuro uhjlvwhu nqrzq dv 3& 3& 3&& 3& 3(& 3)& 3& 3+& zklfkfrqwurovwkhlqsxwrxwsxwfrqjxudwlrq :lwk wklvfrqwuro uhjlvwhuhdfk,2slqzlwkruzlwkrxw sxookljk uhvlvwruv fdq eh uhfrqiljxuhg gqdplfdoo xqghu vriwzduh frqwuro)ru wkh ,2 slq wr ixqfwlrq dv dq lqsxw wkh fruuhvsrqglqj elw ri wkh frqwuro uhjlvwhu pxvw eh zulwwhq dv d 7klv zloo wkhqdoorzwkhorjlfvwdwhriwkhlqsxwslqwrehgluhfwouhdgelqvwuxfwlrqv :khqwkhfruuhvsrqglqj elw ri wkh frqwuro uhjlvwhu lv zulwwhq dv d wkh ,2 slq zloo eh vhwxs dv d &026 rxwsxw ,i wkh slq lv fxuuhqwo vhwxs dv dq rxwsxw lqvwuxfwlrqv fdq vwloo eh xvhg wr uhdg wkh rxwsxw uhjlvwhu +rzhyhu lw vkrxog eh qrwhg wkdw wkh surjudp zloo lq idfw rqo uhdg wkh vwdwxv ri wkh rxwsxw gdwd odwfk dqg qrw wkh dfwxdoorjlfvwdwxvriwkhrxwsxwslq

 rev. 1.10 48 ?a? 0?? ?01? rev. 1.10 49 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu pin-shared functions the	 fexibility	 of	 the	 microcontroller	 range	 is	 greatly	 enhanced	 by	 the	 use	 of	 pins	 that	 have	 more 	 than	 one	 function.	 limited	 numbers	 of	 pins	 can	 force	 serious	 design	 constraints	 on	 designers	 but	 by	 supplying	 pins	 with	 multi-functions, 	 many	 of	 these	 diffculties	 can	 be	 overcome.	 for	 some	 pins,	 the	 chosen 	 function 	 of 	 the 	 multi-function 	 i/o 	 pins 	 is 	 set 	 by 	 confguration 	 options 	 while 	 for 	 others 	 the 	 function	is	set	by	application	program	control. ?	 external	interrupt	input the	 external	 interrupt	 pin,	 int, 	 is	 pin-shared	 with	 an	 i/o	 pin.	 to 	 use	 the	 pin	 as	 an	 external 	 interrupt	 input	 the	 correct	 bits	 in	 the	 intc0	 register	 must	 be	 programmed. 	 the	 pin	 must	 also	 be	 setup	 as	 an	 input	 by	 setting	 the	 pac3 	 bit	 in	 the	 port	 control	 register. 	 a 	 pull-high	 resistor	 can 	 also	 be	 selected	 via	 the	 appropriate	 port	 pull-high	 resistor	 register. 	 note	 that	 even	 if	 the	 pin	 is 	 setup	as	an	external	interrupt	input	the	i/o	function	still	remains. ?	 external	 timer/event 	counter	input the	 timer/event 	 counter	 pins,	 tc0,	 tc1	 and	 tc2	 are	 pin-shared	 with	 i/o	 pins.	 for	 these	 shared	 pins 	to	be 	used	as	 timer/event 	 counter	 inputs,	 the 	 timer/event 	 counter	 must 	be 	 confgured	 to	be	 in	 the	 event	 counter	 or	 pulse	 width 	 capture	 mode.	 this	 is	 achieved	 by	 setting	 the	 appropriate	 bits	 in	 the	 timer/event 	 counter	 control	 register. 	 the	 pins	 must	 also	 be	 setup	 as 		 inputs	 by 	 setting	 the	 appropriate	 bit	 in	 the	 port	 control	 register. 	 pull-high	 resistor	 options	 can	 also	 be 	 selected	 using	 the	 port	 pull-high	 resistor	 registers.	 note	 that	 even	 if	 the	 pin	 is	 setup	 as	 an	 external	 timer	input	the	i/o	function	still	remains. ?	 pfd	output the	 pfd	 function 	 output	 is	 pin-shared	 with	 an	 i/o	 pin.	 the	 output	 function	 of	 this	 pin	 is	 chosen	 using	 the	 ctrl0	 register. 	 note	 that	 the 		 corresponding 		 bit 		 of 		 the 		 port 		 control 		 register, 	 must	 setup	 the	 pin	 as	 an	 output	 to	 enable 	 the	 pfd	 output.	 if	 the	 port	 control 	 register	 has	 setup	 the	 pin	 as	 an	 input,	 then	 the	 pin	 will	 function	 as	 a	 normal	 logic	 input	 with	 the	 usual	 pull-high	 selection,	 even	if	the	pfd	function	has	been	selected. ?	 pwm	outputs the	 pwm	 function	 whose	 outputs	 are	 pin-shared	 with	 i/o	 pins.	 the	 pwm	 output	 functions	 are	 chosen	using	the	ctrl0	 and	ctrl2	 registers.	note	that	the 	corresponding	bit 	of	 the	port 	control	 registers, 	 for	 the	 output 	 pin,	 must 	 setup 	 the	 pin	 as	 an	 output 	 to	 enable	 the	 pwm	 output. 	 if	 the 	 pins 	 are 	 setup 	 as 	 inputs, 	 then 	 the 	 pin 	 will 	 function 	 as 	 a 	 normal 	 logic 	 input 	 with 	 the 	 usual 	 pull-high 	 selections,	even	if	the	pwm	registers	have	enabled	the	pwm	function. ?	 scom	driver	pinss pins		pb0~pb3	on	port	b	can	be	used	as	lcd	com	driver	pins.	 this	function	is	controlled	using 	 the		scomc	register	which	will	generate	the	necessary	1/2	bias	signals	on	these	four	pins. ?	 a/d	inputs each	 device	 in	 this	 series	 has	 up	 to	 16	 inputs	 to	 the	 a/d	 converter. 	 all	 of	 these	 analog	 inputs	 are	 pin-shared	 with	 i/o	 pins.	 if	 these	 pins	 are	 to	 be	 used	 as	 a/d	 inputs	 and	 not	 as	 i/o	 pins	 then	 the	 corresponding	 pcrn	 bits	 in	 the	 ancsr0	 and	 ancsr1	 registers,	 must	 be	 properly	 setup.	 there	 are 	 no	 confguration 	 options 	 associated 	 with 	 the 	 a/d 	 converter. 	 if	 chosen 	 as 	 i/o 	 pins, 	 then 	 full 	 pull-high	 resistor	 confguration	 options	 remain,	 however	 if	 used	 as	 a/d	 inputs	 then	 any	 pull-high	 resistor	confguration	options	associated	with	these	pins	will	be	automatically	disconnected.

 rev. 1.10 50 ?a? 0?? ?01? rev. 1.10 51 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu pin remapping confguration the pin remapping function enales the function pins p/tc, int and pd to e located on different port pins. it is important not to confuse the pin remapping function ith the pinshared function, these to functions have no interdependence. the pc it in the ctr register allos the three function pins p/tc, int and pd to e remapped to different port pins. after poer up, this it ill e reset to zero, hich ill defne the default port pins to hich these three functions ill e mapped. changing this it ill move the functions to other port pins. eamination of the pin names on the package diagrams ill reveal that some pin function names are repeated, this indicates a function pin that can e remapped to other port pins. if the pin name is racketed then this indicates its alternative location. pin names ithout rackets indicates its default location hich is the condition after poeron. pcfg bit status pcfg bit 0 1 pin ?apping (pw? 0/tc1)/pa4 int/pa3 pfd/pa1 [(pw?0/tc1)]/pb5 [int]/pb4 [pfd]/pb3 pin remapping i/o pin structures 7kh gldjudpv looxvwudwh wkh ,2 slq lqwhuqdo vwuxfwxuhv v wkh h[dfw orjlfdo frqvwuxfwlrq ri wkh ,2 slq pd gliihu iurp wkhvh gudzlqjv wkh duh vxssolhg dv d jxlgh rqo wr dvvlvw zlwk wkh ixqfwlrqdo xqghuvwdqglqjriwkh,2slqv

 	

 	
 �

 	
 	
 ??? ?? ? ? ? 	 � generic input/output ports

 rev. 1.10 50 ?a? 0?? ?01? rev. 1.10 51 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	

 	

 	

 � ? ? ? ? ? ?

	 � pa7 nmos input/output port

 	

 � ? ? � ? ?? ? ? ?

	
 - ? - - ? - � ?? � ? ? pb input/output port

 rev. 1.10 5? ?a? 0?? ?01? rev. 1.10 53 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu programming considerations within 	 the	 user	 program,	 one	 of	 the	 frst	 things	 to	 consider	 is	 port	 initialisation. 	 after	 a	 reset,	 the	 i/ o	 data	 register	 and	 i/o	 port	 control	 register	 will	 be	 set	 high.	 this	 means 	 that	 all	 i/o	 pins	 will	 default	 to	 an	 input	 state,	 the	 level	 of	 which	 depends	 on	 the	 other	 connected	 circuitry	 and	 whether	 pull-high	 options 	 have	 been	 selected.	 if	 the	 port	 control	 registers, 	 are	 then	 programmed	 to	 setup	 some	 pins 	 as	 outputs,	 these	 output	 pins	 will	 have	 an	 initial	 high	 output	 value	 unless	 the	 associated	 port	 data 	 register	 is	 frst	 programmed.	 selecting 	 which	 pins	 are	 inputs	 and	 which	 are	 outputs	 can	 be	 achieved	 byte-wide	 by	 loading	 the	 correct	 value	 into	 the	 port	 control	 register	 or	 by	 programming	 individual	 bits	 in	 the	 port	 control	 register	 using	 the	 "set 	 [m].i"	 and	 "clr	 [m].i"	 instructions.	 note	 that	 when	 using	 these	 bit	 control	 instructions,	 a	 read-modify-write	 operation	 takes	 place.	 the	 microcontroller	 must	frst	read	in	the	data	on	the	entire	port,	modify	it	to	the	required	new	bit	values	and	then	rewrite	 this	data	back	to	the	output	ports.

 	 read modify write timing pins	 pa0 	 to	 pa7 	 each	 have	 a	 wake-up	 functions,	 selected	 via	 the	 pawk 	 register. 	 when	 the	 device	 is	 in	 the	 idle/sleep	 mode,	 various	 methods	 are	 available	 to	 wake	 the	 device	 up.	 one	 of	 these	 is	 a	 high	 to	 low	 transition	 of	 any	 of	 the	 these	 pins.	 single	 or	 multiple	 pins	 on	 port	 a 	 can	 be	 setup	 to	 have	 this	 function. timer/event counters the	 provision	 of	 timers	 form	 an	 important	 part	 of	 any	 microcontroller, 	 giving	 the	 designer	 a	 means	 of	 carrying	 out	 time	 related	 functions.	 the	 devices	 contain	 two	 8-bit	 and	 one	 16-bit	 timer. 	 as	 the 	 timers	 have	 three	 different 	 operating 	 modes,	 they	 can	 be	 confgured	 to	 operate	 as	 a	 general	 timer, 	 an	 external	 event	 counter	 or	 as	 a	 pulse	 width	 capture	 device.	 the	 provision	 of	 an	 internal	 prescaler	 to	 the	clock	circuitry	on	gives	added	range	to	the	timers. there	 are	 two	 types	 of	 registers	 related	 to	 the	 timer/event 	 counters.	 the	 first	 is	 the	 register	 that 	 contains	 the	 actual	 value	 of	 the	 timer	 and	 into	 which	 an	 initial	 value	 can	 be	 preloaded.	 reading	 from	 this	 register	 retrieves	 the	 contents	 of	 the	 timer/event 	 counter. 	 the	 second	 type	 of	 associated	 register	 is	 the	 timer 	 control	 register 	 which 	 defines 	 the	 timer	 options 	 and	 determines 	 how 	 the	 timer	 is	 to 	 be	 used.	 the	 device	 can	 have	 the	 timer	 clock	 confgured	 to	 come	 from	 the	 internal	 clock	 source.	 in 	 addition,	the	timer	clock	source	can	also	be	confgured	to	come	from	an	external	timer	pin. confguring	the	timer/event	counter	input	clock	source the 	 timer/event 	 counter 	 clock 	 source 	 can 	 originate 	 from 	 various 	 sources, 	 an 	 internal 	 clock 	 or	 an 	 external	 pin.	 the	 internal	 clock	 source	 is	 used	 when	 the	 timer	 is	 in	 the	 timer	 mode	 or	 in	 the	 pulse	 width	 capture	 mode.	 for	 some	 timer/event 	 counters,	 this	 internal	 clock	 source	 is	 frst	 divided	 by	 a	 prescaler, 	 the	 division	 ratio	 of	 which	 is	 conditioned	 by	 the	 timer 	 control	 register	 bits.	 an	 external	 clock	 source	 is	 used	 when	 the	 timer 	 is	 in	 the	 event	 counting	 mode,	 the	 clock	 source	 being	 provided	 on	 an	 external	 timer 	 pin	 tcn.	 depending	 upon	 the	 condition	 of	 the	 tneg	 bit,	 each	 high	 to	 low, 	 or	 low	to	high	transition	on	the	external	timer	pin	will	increment	the	counter	by	one.

 rev. 1.10 5? ?a? 0?? ?01? rev. 1.10 53 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu timer registers C tmr0, tmr1, tmr2l, tmr2h the	 timer	 registers	 are	 special	 function	 registers	 located	 in	 the	 special	 purpose	 data	 memory	 and	 is	 the	 place	 where	 the	 actual	 timer	 value	 is	 stored.	 these	 registers	 are	 known	 as	 tmr0,	 tmr1, 	 tmr2l 	 and	 tmr2h.	 the	 value	 in	 the	 timer	 registers	 increases	 by	 one	 each	 time	 an	 internal	 clock	 pulse	 is	 received	 or	 an	 external	 transition	 occurs	 on	 the	 external	 timer	 pin.	 the	 timer	 will	 count	 from	 the	 initial	 value	 loaded	 by	 the	 preload	 register	 to	 the	 full	 count	 of	 ffh	 for	 the	 8-bit	 timer/event 	 counter	 or	 ffffh	 for	 the	 16-bit	 timer/event 	 counters,	 at	 which	 point	 the	 timer	 overflows	 and 	 an	 internal	 interrupt	 signal	 is	 generated.	 the	 timer	 value	 will	 then	 be	 reset	 with	 the	 initial 	 preload 	 register 	 value 	 and 	 continue 	 counting. 	 note 	 that 	 to 	 achieve 	 a 	 maximum 	 full 	 range 	 count 	 of	 ffh	 or 	 ffffh,	 the	 preload 	 register	 must	 frst	 be	 cleared	 to	 all	 zeros.	 it	 should	 be	 noted	 that	 after	 power-on, 	 the	 preload	 registers 	 will	 be	 in	 an	 unknown	 condition.	 note	 that	 if	 the	 timer/event 	 counter	 is	 in	 an	 off	 condition	 and	 data	 is	 written	 to	 its	 preload	 register, 	 this	 data	 will	 be	 immediately	 written	 into	 the	 actual	 counter. 	 however, 	 if	 the	 counter	 is	 enabled	 and	 counting,	 any	 new	 data	 written	 into	 the 	 preload	 data	 register	 during	 this	 period	 will	 remain	 in	 the	 preload	 register	 and	 will	 only	 be	 written	 into	the	actual	counter	the	next	time	an	overfow	occurs. timer control registers C tmr0c, tmr1c, tmr2c the	 fexible	 features	 of	 the	 holtek	 microcontroller	 timer/event 	 counters	 enable	 them	 to	 operate	 in	 three	 different	modes,	the	options	of	which	are	determined	by	the	contents	of	their	respective	control	 register. the	 timer 	 control	 register	 is	 known	 as	 tmrnc.	 it	 is	 the	 timer 	 control	 register	 together	 with 	 its	 corresponding	 timer	 register	 that	 control	 the	 full	 operation	 of	 the	 timer/event 	 counter. 	 before 	 the 	 timer 	 can 	 be 	 used, 	 it 	 is 	 essential 	 that 	 the 	 timer 	 control 	 register 	 is 	 fully 	 programmed 	 with 	 the 	 right	 data	 to	 ensure	 its	 correct	 operation,	 a	 process	 that	 is	 normally	 carried	 out	 during	 program 	 initialisation. to 	 choose 	 which 	 of 	 the 	 three 	 modes 	 the 	 timer 	 is 	 to 	 operate 	 in, 	 either 	 in 	 the 	 timer 	 mode, 	 the 	 event 	 counting	 mode	 or	 the	 pulse	 width	 capture	 mode,	 bits	 7	 and	 6	 of	 the	 timer 	 control	 register, 	 which	 are	known	as	the	bit	pair	 tnm1/tnm0,	must	be	set	to	the	required	logic	levels. the	 timer-on 	 bit,	 which	 is	 bit	 4	 of	 the	 timer 	 control	 register	 and	 known	 as	 tnon,	 provides	 the 	 basic	 on/off 	 control	 of	 the	 respective	 timer. 	 setting	 the	 bit	 high	 allows	 the	 counter	 to	 run,	 clearing	 the	 bit	 stops	 the	 counter. 	 bits	 0~2	 of	 the	 timer 	 control	 register	 determine	 the	 division	 ratio	 of	 the	 input	 clock	 prescaler. 	 the	 prescaler 	 bit	 settings	 have	 no	 effect 	 if	 an	 external	 clock	 source	 is	 used.	 if	 the	 timer	 is	 in	 the	 event	 count	 or	 pulse	 width	 capture	 mode,	 the	 active 	 transition	 edge	 level	 type	 is	 selected	 by	 the	 logic	 level	 of	 bit	 3	 of	 the	 timer 	 control	 register	 which	 is	 known	 as	 tneg.	 the	 tns	 bit	selects	the	internal	clock	source.

 	 � ? ?
 ? ? ? � ? ? ? ?

?
 - ? ? ? ? ?? ? ? ? ? ?
 ? ? ?
 ? clock structure for timer/pwm/time base

 rev. 1.10 54 ?a? 0?? ?01? rev. 1.10 55 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	 	

 � ? ?? ? ? ? ? -

 ? ? ? 8-bit timer/event counter 0 structure

 	 � ? 	? � ? ??
 ? - ?
 ?
? ? 8-bit timer/event counter 1 structure

 	

 �

 ?? ? ? ? ? - ? ? ? 16-bit timer/event counter 2 structure 0 ?ux pfd0 pfd1 pfd output pfdcs 1 note: if pwm0/pwm1/pwm2/pwm4 is enabled, then f tp comes from f sys (ignore t0s)

 rev. 1.10 54 ?a? 0?? ?01? rev. 1.10 55 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? tmr0c register bit 7 6 5 4 3 2 1 0 name t0?1 t0?0 t0s t0on t0eg t0psc? t0psc1 t0psc0 r/w r/w r/w r/w r/w r/w r/w r/w r/w por 0 0 0 0 1 0 0 0 %lw t0m1, t0m0 7lphu rshudwlrprghvhohfwlr rprghddlodeoh hhwfrxwhuprgh wlphuprgh sxovhzlgwkfdswxuhprgh lw t0s wlphuforfnvrxufh i ss /7 rvfloodwru 76 vhohfwv wkh forfn vrxufh iru i73 zklfk lv surlghg iru 7lphu wkh 7lphdvh dgwkh3:0,iwkh3:0lvhdeohgwkhi ss zlooehvhohfwhgrhuulglwkh 76 vhohfwlr lw t0on 7lphuhhw frxwhufrxwlhdeoh glvdeoh hdeoh lw t0eg hwfrxwhudfwlhhghvhohfwlr frxwrudlvlhgh frxwridoolhgh 3xovh :lgwk dswxuhdfwlhhghvhohfwlr vwduwfrxwlridoolhghvwrsrudlvlhgh vwduwfrxwlrudlvlhghvwrsridoolhgh lw t0psc2, t0psc1, t0psc0 7lphu suhvfdohuudwh vhohfwlr 7lphu lwhudoforfn i 73 i 73 i 73 i 73 i 73 i 73 i 73 i 73

 rev. 1.10 56 ?a? 0?? ?01? rev. 1.10 57 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? tmr1c register bit 7 6 5 4 3 2 1 0 name t1?1 t1?0 t1s t1on t1eg r/w r/w r/w r/w r/w r/w por 0 0 0 0 1 %lw t1m1, t1m0 7lphu rshudwlrprghvhohfwlr rprghddlodeoh hhwfrxwhuprgh wlphuprgh sxovhzlgwkfdswxuhprgh lw t1s wlphuforfnvrxufh i ss /7 rvfloodwru lw t1on 7lphuhhw frxwhufrxwlhdeoh glvdeoh hdeoh lw t1eg hwfrxwhudfwlhhghvhohfwlr frxwrudlvlhgh frxwridoolhgh 3xovh :lgwk dswxuhdfwlhhghvhohfwlr vwduwfrxwlridoolhghvwrsrudlvlhgh vwduwfrxwlrudlvlhghvwrsridoolhgh lw xlpsohphwhguhdgdv ? tmr2c register bit 7 6 5 4 3 2 1 0 name t??1 t??0 t?s t?on t?eg r/w r/w r/w r/w r/w r/w por 0 0 0 0 1 %lw t2m 1, t2m0 7lphu rshudwlrprghvhohfwlr rprghddlodeoh hhwfrxwhuprgh wlphuprgh sxovhzlgwkfdswxuhprgh lw t2s wlphuforfnvrxufh i ss /7 rvfloodwru lw t2on 7lphuhhw frxwhufrxwlhdeoh glvdeoh hdeoh lw t2eg hwfrxwhudfwlhhghvhohfwlr frxwrudlvlhgh frxwridoolhgh 3xovh :lgwk dswxuhdfwlhhghvhohfwlr vwduwfrxwlridoolhghvwrsrudlvlhgh vwduwfrxwlrudlvlhghvwrsridoolhgh lw xlpsohphwhguhdgdv

 rev. 1.10 56 ?a? 0?? ?01? rev. 1.10 57 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu to 	 choose 	 which 	 of 	 the 	 three 	 modes 	 the 	 timer 	 is 	 to 	 operate 	 in, 	 either 	 in 	 the 	 timer 	 mode, 	 the 	 event 	 counting	 mode	 or	 the	 pulse	 width	 capture	 mode,	 bits	 7	 and	 6	 of	 the	 timer 	 control	 register, 	 which	 are	known	as	the	bit	pair	 tnm1/tnm0,	must	be	set	to	the	required	logic	levels. the	 timer-on 	 bit,	 which	 is	 bit	 4	 of	 the	 timer 	 control	 register	 and	 known	 as	 tnon,	 provides	 the 	 basic	 on/off 	 control	 of	 the	 respective	 timer. 	 setting	 the	 bit	 high	 allows	 the	 counter	 to	 run,	 clearing	 the	 bit	 stops	 the	 counter. 	 bits	 0~2	 of	 the	 timer 	 control	 register	 determine	 the	 division	 ratio	 of	 the	 input	 clock	 prescaler. 	 the	 prescaler 	 bit	 settings	 have	 no	 effect 	 if	 an	 external	 clock	 source	 is	 used.	 if	 the	 timer	 is	 in	 the	 event	 count	 or	 pulse	 width	 capture	 mode,	 the	 active 	 transition	 edge	 level	 type	 is	 selected	 by	 the	 logic	 level	 of	 bit	 3	 of	 the	 timer 	 control	 register	 which	 is	 known	 as	 tneg.	 the	 tns	 bit	selects	the	internal	clock	source	if	used. timer mode in	 this	 mode,	 the	 timer/event 	 counter	 can	 be	 utilised	 to	 measure	 fxed	 time	 intervals,	 providing 	 an	 internal	 interrupt 	 signal	 each	 time	 the	 timer/event 	 counter	 overfows.	 to 	 operate	 in	 this	 mode,	 the	 operating	 mode	 select	 bit	 pair, 	 tnm1/tnm0,	 in	 the	 timer 	 control	 register	 must	 be	 set	 to	 the	 correct	value	as	shown. control register operating ?ode bit7 bit6 select bits for the timer ?ode 1 0 in	 this	 mode	 the	 internal	 clock	 is	 used	 as	 the	 timer	 clock.	 the	 timer	 input	 clock	 source	 is	 either	 f sys ,	 f sys /4	 or	 the	 lxt 	 oscillator. 	 however, 	 this	 timer	 clock	 source	 is	 further	 divided	 by	 a	 prescaler, 	 the	 value	 of	 which	 is	 determined	 by	 the	 bits	 tnpsc2~tnpsc0	 in	 the	 timer 	 control	 register. 	 the	 timer- on	 bit,	 tnon	 must	 be	 set	 high	 to	 enable	 the	 timer	 to	 run.	 each	 time	 an	 internal	 clock	 high	 to	 low	 transition 	 occurs, 	 the 	 timer 	 increments 	 by	 one; 	 when 	 the 	 timer 	 is 	 full 	 and 	 overfows, 	 an 	 interrupt 	 signal	 is	 generated 	 and	 the	 timer	 will	 reload	 the	 value	 already	 loaded	 into	 the	 preload	 register	 and	 continue 	 counting.	 a 	 timer 	 overflow	 condition	 and	 corresponding	 internal	 interrupt	 is	 one	 of	 the 	 wake-up	 sources,	 however, 	 the	 internal	 interrupts	 can	 be	 disabled	 by	 ensuring	 that	 the	 etni	 bits	 of	 the	intcn	register	are	reset	to	zero. event counter mode in	 this	 mode,	 a	 number	 of	 externally	 changing	 logic	 events,	 occurring	 on	 the	 external	 timer	 tcn	 pin,	 can	 be	 recorded	 by	 the	 timer/event 	 counter. 	 to 	 operate	 in	 this	 mode,	 the	 operating	 mode	 select	 bit	 pair, 	 tnm1/tnm0,	in	the	 timer 	control	register	must	be	set	to	the	correct	value	as	shown. control register operating ?ode bit7 bit6 select bits for the event counter ?ode 0 1 in	 this	 mode,	 the	 external	 timer	 tcn	 pin,	 is	 used	 as	 the	 timer/event 	 counter	 clock	 source,	 however	 it	 is	 not	 divided	 by	 the	 internal	 prescaler. 	 after	 the	 other	 bits	 in	 the	 timer 	 control	 register	 have 	 been 	 setup, 	 the 	 enable 	 bit 	 tnon, 	 which 	 is 	 bit 	 4 	 of 	 the 	 timer 	 control 	 register, 	 can 	 be 	 set 	 high 	 to 	 enable	 the	 timer/event 	 counter	 to	 run.	 if	 the	 active	 edge	 select	 bit,	 tneg,	 which	 is	 bit	 3	 of	 the 	 timer 	 control	 register, 	 is	 low, 	 the	 timer/event 	 counter	 will	 increment	 each	 time	 the	 external	 timer	 pin	 receives 	 a	 low	 to	 high	 transition. 	 if	 the	 tneg	 is	 high,	 the	 counter	 will	 increment	 each	 time	 the	 external	 timer	 pin	 receives	 a	 high	 to	 low	 transition.	 when	 it	 is	 full	 and	 overfows,	 an	 interrupt	 signal	 is 	 generated 	 and 	 the 	 timer/event 	 counter 	 will 	 reload 	 the 	 value 	 already 	 loaded 	 into 	 the 	 preload 	 register	 and	 continue	 counting.	 the	 interrupt	 can	 be	 disabled	 by	 ensuring	 that	 the	 timer/event 	 counter	interrupt	enable	bit	in	the	corresponding	interrupt	control	 register,	is	reset	to	zero.

 rev. 1.10 58 ?a? 0?? ?01? rev. 1.10 59 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu as	 the	 external	 timer 	 pin	 is	 shared	 with	 an	 i/o	 pin,	 to	 ensure	 that	 the	 pin	 is	 confgured	 to	 operate	 as	 an	 event	 counter	 input	 pin,	 two	 things	 have	 to	 happen.	 the	 frst	 is	 to	 ensure	 that	 the	 operating	 mode	 select 	 bits 	 in	 the 	 timer 	 control 	 register	 place 	 the 	 timer/event 	 counter 	 in	 the 	 event 	 counting 	 mode,	 the	 second	 is	 to	 ensure	 that	 the	 port	 control	 register	 confgures	 the	 pin	 as	 an	 input.	 it	 should	 be	 noted	 that	 in	 the	 event	 counting	 mode,	 even	 if	 the	 is	 in	 the	 idle/sleep	 mode,	 the	 timer/event 	 counter	 will	 continue	 to	 record	 externally	 changing	 logic	 events	 on	 the	 timer	 input	 tcn	 pin.	 as	 a	 result	when	the	timer	overfows	it	will	generate	a	timer	interrupt	and	corresponding	wake-up	source.

 	 	 timer mode timing chart

 event counter mode timing chart (tneg=1) pulse width capture mode in	 this	 mode,	 the	 timer/event 	 counter	 can	 be	 utilised	 to	 measure	 the	 width	 of	 external	 pulses 	 applied	to	the	external	timer	pin.	 to 	operate	in	this	mode,	the	operating	mode	select	bit	 pair,	 tnm1/ tnm0,	in	the	 timer 	control	register	must	be	set	to	the	correct	value	as	shown. control register operating ?ode bit7 bit6 select bits for the pulse width capture ?ode 1 1 in	 this	 mode	 the	 internal	 clock,	 f sys	 ,	 f sys /4	 or	 the	 lxt, 	 is	 used	 as	 the	 internal	 clock	 for	 the	 8-bit 	 timer/event 	 counter. 	 however, 	 the	 clock	 source,	 f sys ,	 for	 the	 8-bit	 timer	 is	 further	 divided	 by	 a 	 prescaler, 	 the 	 value 	 of	 which 	 is 	 determined 	 by	 the 	 prescaler 	 rate 	 select 	 bits 	 tnpsc2~tnpsc0, 	 which	 are	 bits	 2~0	 in	 the	 timer 	 control	 register. 	 after	 the	 other	 bits	 in	 the	 timer 	 control	 register	 have	 been	 setup,	 the	 enable	 bit	 tnon,	 which	 is	 bit	 4	 of	 the	 timer 	 control	 register, 	 can	 be	 set	 high	 to	 enable 	 the	 timer/event 	 counter, 	 however	 it	 will	 not	 actually	 start	 counting	 until	 an	 active	 edge	 is	 received	on	the	external	timer	pin. if	 the	 active	 edge	 select	 bit	 tneg,	 which	 is	 bit	 3	 of	 the	 timer 	 control	 register, 	 is	 low, 	 once	 a	 high	 to 	 low 	 transition 	 has 	 been 	 received 	 on	 the 	 external 	 timer 	 pin, 	 the 	 timer/event 	 counter 	 will 	 start 	 counting	 until	 the	 external	 timer	 pin	 returns	 to	 its	 original	 high	 level.	 at	 this	 point	 the	 enable	 bit	 will	 be	 automatically	 reset	 to	 zero	 and	 the	 timer/event 	 counter	 will	 stop	 counting.	 if	 the	 active	 edge 	 select 	 bit 	 is	 high,	 the	 timer/event 	 counter	 will 	 begin	 counting	 once	 a	 low	 to	 high 	 transition 	 has 	 been	 received 	 on	 the	 external	 timer 	 pin	 and	 stop	 counting	 when	 the	 external	 timer	 pin	 returns	 to	 its	 original	 low	 level. 	 as	 before,	 the	 enable	 bit	 will	 be	 automatically	 reset	 to	 zero	 and	 the	 timer/event 	 counter	 will	 stop	 counting.	 it	 is	 important	 to	 note	 that	 in	 the	 pulse	 width	 capture	 mode,	 the	 enable	 bit	 is	 automatically 	 reset	 to	 zero	 when	 the	 external	 control	 signal	 on	 the	 external	 timer	 pin	 returns	 to	 its	 original	 level,	 whereas	 in	 the	 other	 two	 modes	 the	 enable	 bit	 can	 only	 be	 reset	 to	 zero	 under	 program	control.

 rev. 1.10 58 ?a? 0?? ?01? rev. 1.10 59 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu the	 residual	 value	 in	 the	 timer/event 	 counter, 	 which	 can	 now	 be	 read	 by	 the	 program,	 therefore 	 represents	 the	 length	 of	 the	 pulse	 received	 on	 the	 tcn	 pin.	 as	 the	 enable 	 bit	 has	 now	 been	 reset,	 any	 further	 transitions	 on	 the	 external	 timer	 pin	 will	 be	 ignored.	 the	 timer	 cannot	 begin	 further	 pulse 	 width	 capture	 until	 the	 enable	 bit	 is	 set	 high	 again	 by	 the	 program.	 in	 this	 way, 	 single	 shot	 pulse 	 measurements	can	be	easily	made. it	 should	 be	 noted	 that	 in	 this	 mode	 the	 timer/event 	 counter	 is	 controlled	 by	 logical	 transitions	 on	 the	 external	 timer	 pin	 and	 not	 by	 the	 logic	 level.	 when	 the	 timer/event 	 counter	 is	 full	 and	 overfows,	 an	 interrupt	 signal	 is	 generated	 and	 the	 timer/event 	 counter	 will	 reload	 the	 value	 already	 loaded	 into	 the	 preload	 register	 and	 continue	 counting.	 the	 interrupt	 can	 be	 disabled	 by	 ensuring	 that	 the	 timer/event 	 counter	interrupt	enable	bit	in	the	corresponding	interrupt	control	 register,	is	reset	to	zero. as	 the	 tcn	 pin	 is	 shared	 with	 an	 i/o	 pin,	 to	 ensure	 that	 the	 pin	 is	 confgured	 to	 operate	 as	 a	 pulse	 width	 capture	 pin,	 two	 things	 have	 to	 happen.	 the	 frst	 is	 to	 ensure	 that	 the	 operating	 mode	 select	 bits	 in	 the	 timer 	 control	 register	 place	 the	 timer/event 	 counter	 in	 the	 pulse	 width	 capture	 mode,	 the	second	is	to	ensure	that	the	port	control	register	confgures	the	pin	as	an	input. prescaler bits	 t0psc0~t0psc2	 of	 the	 tmr0c	 register	 can	 be	 used	 to	 defne	 a	 division	 ratio	 for	 the	 internal	 clock	source	of	the	 timer/event 	counter	enabling	longer	time	out	periods	to	be	setup. pfd function the	 programmable	 frequency	 divider	 provides	 a	 means	 of	 producing	 a	 variable	 frequency	 output	 suitable 	 for	 applications, 	 such 	 as 	 piezo-buzzer 	 driving 	 or	 other 	 interfaces 	 requiring 	 a 	 precise 	 frequency	 generator. the	 timer/event 	 counter	 overfow	 signal	 is	 the	 clock	 source	 for	 the	 pfd	 function,	 which	 is	 controlled	 by	 pfdcs	 bit	 in	 ctrl0.	 for	 applicable	 devices	 the	 clock	 source	 can	 come	 from	 either	 timer/event 	 counter	 0	 or	 timer/event 	 counter	 1. 		 the	 output	 frequency	 is	 controlled	 by	 loading	 the	 required	 values	 into	 the	 timer	 prescaler	 and	 timer	 registers	 to	 give	 the	 required	 division	 ratio.	 the	 counter	 will	 begin 	 to	 count-up	 from	 this	 preload	 register	 value	 until	 full,	 at	 which	 point	 an	 overfow	 signal	 is	 generated,	 causing	 both	 the	 pfd	 outputs	 to	 change	 state.	 the	 counter	 will	 then	 be	 automatically	 reloaded	 with	 the	 preload	register	value	and	continue	counting-up. if	 the	 ctrl0	 register	 has	 selected	 the	 pfd	 function,	 then	 for	 pfd	 output	 to	 operate,	 it	 is	 essential	 for	 the	 port	 a 	 control	 register	 pac, 	 to	 setup	 the	 pfd	 pins	 as	 outputs.	 pa1 	 must	 be	 set	 high	 to 	 activate	the	 pfd.	 the	 output	 data	 bits	 can	 be	 used	 as	 the	 on/off 	 control	 bit	 for	 the	 pfd	 outputs.	 note	 that	the	pfd	outputs	will	all	be	low	if	the	output	data	bit	is	cleared	to	zero. using	 this	 method 	 of	 frequency	 generation,	 and	 if	 a	 crystal	 oscillator	 is	 used	 for	 the	 system	 clock,	 very	precise	values	of	frequency	can	be	generated.

 	
 	

 �

 	

 ? ? ? ? ? ? ? � ? ? pulse width capture mode timing chart (tne=0)

 rev. 1.10 60 ?a? 0?? ?01? rev. 1.10 61 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	
 	

 pfd function i/o interfacing the	 timer/event 	 counter, 	 when	 configured	 to	 run	 in	 the	 event	 counter	 or	 pulse	 width	 capture 	 mode,	 requires	 the	 use	 of	 an	 external	 timer	 pin	 for	 its	 operation.	 as	 this	 pin	 is	 a	 shared	 pin	 it	 must 	 be	 confgured	 correctly	 to	 ensure	 that	 it	 is	 setup	 for	 use	 as	 a	 timer/event 	 counter	 input	 pin.	 this	 is 	 achieved	 by	 ensuring	 that	 the	 mode	 select	 bits	 in	 the	 timer/event 	 counter	 control	 register, 	 select	 either	 the	 event	 counter	 or	 pulse	 width	 capture	 mode.	 additionally	 the	 corresponding	 port	 control	 register 	 bit	 must	 be	 set	 high	 to	 ensure	 that	 the	 pin	 is	 setup	 as	 an	 input.	 any	 pull-high	 resistor	 connected	 to	 this	 pin	will	remain	valid	even	if	the	pin	is	used	as	a	 timer/event 	counter	input. programming considerations when	 confgured	 to	 run	 in	 the	 timer	 mode,	 the	 internal	 system	 clock	 is	 used	 as	 the	 timer	 clock	 source	 and	 is 	 therefore	 synchronised 	 with 	 the	 overall	 operation	 of	 the	 microcontroller. 	 in	 this 	 mode	 when 	 the 	 appropriate 	 timer 	 register 	 is 	 full, 	 the 	 microcontroller 	 will 	 generate 	 an 	 internal 	 interrupt 	 signal 	 directing	 the	 program	 fow	 to	 the	 respective	 internal	 interrupt	 vector. 	 for	 the	 pulse	 width	 capture	 mode,	 the	 internal	 system	 clock	 is	 also	 used	 as	 the	 timer	 clock	 source	 but	 the	 timer	 will	 only	 run	 when	 the 	 correct 	 logic 	 condition 	 appears 	 on	 the 	 external 	 timer 	 input 	 pin.	 as	 this 	 is 	 an	 external 	 event 	 and	 not 	 synchronised	 with	 the	 internal	 timer	 clock,	 the	 microcontroller	 will	 only	 see	 this	 external	 event	 when	 the	 next	 timer	 clock	 pulse	 arrives.	 as	 a	 result,	 there	 may	 be	 small	 differences 	 in	 measured	 values 	 requiring	 programmers	 to	 take	 this	 into	 account	 during	 programming.	 the	 same	 applies	 if	 the	 timer	 is	 confgured	 to	 be	 in	 the	 event	 counting	 mode,	 which	 again	 is	 an	 external	 event	 and	 not	 synchronised 	 with	the	internal	system	or	timer	clock. when	 the	 timer/event 	 counter	 is	 read,	 or	 if	 data	 is	 written	 to	 the	 preload	 register, 	 the	 clock	 is	 inhibited	 to	 avoid	 errors,	 however	 as	 this	 may	 result	 in	 a	 counting	 error, 	 this	 should	 be	 taken	 into	 account	 by	 the	 programmer. 	 care	 must	 be	 taken	 to	 ensure	 that	 the	 timers	 are	 properly	 initialised	 before	 using	 them 	 for	 the	 frst	 time.	 the	 associated	 timer	 enable	 bits	 in	 the	 interrupt	 control	 register	 must	 be	 properly	 set	 otherwise	 the	 internal	 interrupt	 associated	 with	 the	 timer	 will	 remain	 inactive.	 the	 edge	 select,	 timer 	 mode	 and	 clock	 source	 control	 bits	 in	 timer	 control	 register	 must	 also	 be	 correctly	 set	 to	 ensure	 the 	 timer	 is	 properly	 confgured	 for	 the	 required	 application.	 it	 is	 also	 important	 to	 ensure	 that	 an	 initial 	 value	 is	 frst	 loaded	 into	 the	 timer	 registers	 before	 the	 timer	 is	 switched	 on;	 this	 is	 because	 after	 power- on 	 the 	 initial 	 values 	 of 	 the 	 timer 	 registers 	 are 	 unknown. 	 after 	 the 	 timer 	 has 	 been 	 initialised 	 the 	 timer 	 can 	 be	turned	on	and	 off	by	controlling	the	enable	bit	in	the	timer	control	 register. when 	 the 	 timer/event 	 counter 	 overfows, 	 its 	 corresponding 	 interrupt 	 request 	 fag 	 in 	 the 	 interrupt 	 control	 register	 will	 be	 set.	 if	 the	 timer/event 	 counter	 interrupt	 is	 enabled	 this	 will	 in	 turn	 generate	 an	 interrupt	 signal.	 however	 irrespective	 of	 whether	 the	 interrupts	 are	 enabled	 or	 not,	 a	 timer/event 	 counter 	 overfow 	 will 	 also 	 generate 	 a 	 wake-up 	 signal 	 if 	 the 	 device 	 is 	 in 	 a 	 power-down 	 condition. 	 this 	 situation 	 may 	 occur 	 if 	 the 	 timer/event 	 counter 	 is 	 in 	 the 	 event 	 counting 	 mode 	 and 	 if 	 the 	 external	 signal	 continues	 to	 change	 state.	 in	 such	 a	 case,	 the	 timer/event 	 counter	 will	 continue	 to	 count	 these	 external	 events	 and	 if	 an	 overfow	 occurs	 the	 device	 will	 be	 woken	 up	 from	 its	 power- down	 condition.	 to 	 prevent	 such	 a	 wake-up	 from	 occurring,	 the	 timer	 interrupt	 request	 fag	 should	 frst	be	set	high	before	issuing	the	 "halt"	instruction	to	enter	the	idle/sleep	mode.

 rev. 1.10 60 ?a? 0?? ?01? rev. 1.10 61 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu timer program example the	 program	 shows	 how	 the	 timer/event 	 counter	 registers	 are	 setup	 along	 with	 how	 the	 interrupts	 are 	 enabled 	 and 	 managed. 	 note 	 how 	 the 	 timer/event 	 counter 	 is 	 turned 	 on, 	 by 	 setting 	 bit 	 4 	 of 	 the 	 timer 	 control	 register. 	 the	 timer/event 	 counter	 can	 be	 turned	 off 	 in	 a	 similar	 way	 by	 clearing	 the	 same	 bit.	 this	 example	 program	 sets	 the	 timer/event 	 counters	 to	 be	 in	 the	 timer	 mode,	 which	 uses	 the	internal	system	clock	as	their	clock	source. pfd programming example org 04h ; external interrupt vector org 08h ; timer counter 0 interrupt vector s ul s huh h 7lhu yhu : : org 20h ; main program : : ;internal timer 0 interrupt routine tmr0int: : ; timer 0 main program placed here : : begin: ;setup timer 0 registers mov a,09bh ; setup timer 0 preload value mov tmr0,a mov a,081h ; setup timer 0 control register mov tmr0c,a ; timer mode and prescaler set to /2 ;setup interrupt register mov a,00dh ; enable master interrupt and both timer interrupts mov intc0,a : : set tmr0c.4 ; start timer 0 : : time base the	device	includes	a	 time 	base	function	which	is	used	to	generate	a	regular	time	interval	signal. the	 time 	 base	 time	 interval	 magnitude	 is	 determined	 using	 an	 internal	 13	 stage	 counter	 sets	 the 	 division	 ratio	 of	 the	 clock	 source.	 this	 division	 ratio	 is	 controlled	 by	 both	 the	 tbsel0	 and	 tbsel1	 bits	in	the	ctrl1	 register.	 the	clock	source	is	selected	using	the	 t0s	bit	in	the	 tmr0c	 register. when	the	 time 	base	 time	out,	 a	 time 	base	interrupt	signal	will	be	generated.	it	should	 be	noted	that	 as	 the	 time 	 base	 clock	 source	 is	 the	 same	 as	 the	 timer/event 	 counter	 clock	 source,	 care	 should	 be	 taken	when	programming.

 rev. 1.10 6? ?a? 0?? ?01? rev. 1.10 63 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu pulse width modulator every	 device	 includes 	 a	 multiple	 output	 8-bit	 pwm	 function.	 useful	 for	 such	 applications	 such	 as	 motor	 speed	 control,	 the	 pwm	 function	 provides	 outputs	 with	 a	 fxed	 frequency	 but	 with	 a	 duty 	 cycle	that	can	be	varied	by	setting	particular	values	into	the	corresponding	pwm	 register.

	 	

	 	

	 	
 � ?

	 	 ? ? pwm block diagram device channels mode pins registers ht46r068b ht46r069b 4 6+? 7+1 pa4 pc3 pc? pd1 pw?0 pw?1 pw?? pw?3

 rev. 1.10 6? ?a? 0?? ?01? rev. 1.10 63 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu pwm operation a 	 single	 register, 	 known	 as	 pwmn	 and	 located	 in	 the	 data	 memory	 is	 assigned	 to	 each	 pulse	 width 	 modulator	 channel.	 it	 is	 here	 that	 the	 8-bit	 value,	 which	 represents	 the	 overall	 duty	 cycle	 of	 one 	 modulation	 cycle	 of	 the	 output	 waveform, 	 should 	 be	 placed.	 to 	 increase 	 the	 pwm 	 modulation 	 frequency, 	 each	 modulation	 cycle	 is	 subdivided	 into	 two	 or	 four	 individual	 modulation	 subsections,	 known	as	the	7+1	mode	or	6+2	mode	 respectively.	 the	required	mode	and	the	 on/off	control	for	each 	 pwm	 channel	 is	 selected	 using	 the	 ctrl0	 and	 ctrl2	 registers.	 note	 that	 when	 using	 the	 pwm,	 it	 is	 only	 necessary	 to	 write	 the	 required	 value	 into	 the	 pwmn	 register	 and	 select	 the	 required	 mode	 setup	 and	 on/off 	 control	 using	 the	 ctrl0	 and	 ctrl2	 registers,	 the	 subdivision	 of	 the	 waveform 	 into	 its	 sub-modulation	 cycles	 is	 implemented	 automatically	 within	 the	 microcontroller	 hardware. 	 the 	 pwm 	 clock 	 source 	 is 	 the 	 system 	 clock 	 f sys .	 this 	 method 	 of	 dividing 	 the 	 original 	 modulation 	 cycle	 into	 a	 further	 2	 or	 4	 sub-cycles	 enable	 the	 generation	 of	 higher	 pwm	 frequencies	 which	 allow	 a	 wider	 range	 of	 applications	 to	 be	 served.	 the	 difference 	 between	 what	 is	 known	 as	 the	 pwm 	 cycle	 frequency	 and	 the	 pwm	 modulation	 frequency	 should	 be	 understood.	 as	 the	 pwm	 clock 	 is	 the	 system	 clock,	 f sys ,	 and	 as	 the	 pwm	 value	 is	 8-bits	 wide,	 the	 overall	 pwm	 cycle	 frequency 	 is	 f sys /256.	 however, 	 when	 in	 the	 7+1	 mode	 of	 operation	 the	 pwm	 modulation	 frequency	 will	 be 	 f sys /128,	while	the	pwm	modulation	frequency	for	the	6+2	mode	of	operation	will	be	f sys /64. pwm modulation pwm cycle frequency pwm cycle duty f sys /64 for (6+?) bits mode f sys /1?8 for (7+1) bits mode f sys /?56 [pw?]/?56 6+2 pwm mode each	 full	 pwm	 cycle,	 as	 it	 is	 controlled	 by	 an	 8-bit	 pwm	 register, 	 has	 256	 clock	 periods.	 however, 	 in	 the	 6+2	 pwm	 mode,	 each	 pwm	 cycle	 is	 subdivided	 into	 four	 individual	 sub-cycles	 known	 as 	 modulation	cycle	0	~	modulation	cycle	3,	denoted	as	i	in	the	table.	each	one	of	these	four	sub-cycles	 contains	64	clock	cycles.	in	this	mode,	a	modulation	frequency	increase	of	four	is	achieved.	 the	8-bit 	 pwm	 register	 value,	 which	 represents	 the	 overall	 duty	 cycle	 of	 the	 pwm	 waveform,	 is	 divided	 into	 two	 groups.	the	 frst	 group	 which	 consists	 of	 bit2~bit7	 is	 denoted	 here	 as	 the	 dc	 value.	the	 second	 group	 which	 consists	 of	 bit0~bit1	 is	 known	 as	 the	 ac	 value.	 in	 the	 6+2	 pwm	 mode,	 the	 duty	 cycle	 value	of	each	of	the	four	modulation	sub-cycles	is	shown	in	the	following	table. parameter ac (0~3) dc (duty cycle) ?odulation c?cle i (i=0~3) i < ac dc+1 64 l& dc 64 6+2 mode modulation cycle values the	 following	 diagram	 illustrates	 the	 waveforms	 associated	 with	 the	 6+2	 mode	 of	 pwm	 operation.	 it	 is	 important	 to	 note	 how	 the	 single	 pwm	 cycle	 is	 subdivided	 into	 4	 individual	 modulation	 cycles,	 numbered	from	0~3	and	how	the	 ac	value	is	related	to	the	pwm	value.

 rev. 1.10 64 ?a? 0?? ?01? rev. 1.10 65 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

	

	

	

	
	
	
	
	
	
	
	

	

	
	
	

	
	

	

	

	
 �
?
	

 6+2 pwm mode pwm register for 6+2 mode 7+1 pwm mode each	 full	 pwm	 cycle,	 as	 it	 is	 controlled	 by	 an	 8-bit	 pwm	 register, 	 has	 256	 clock	 periods.	 however, 	 in	 the	 7+1	 pwm	 mode,	 each	 pwm	 cycle	 is	 subdivided	 into	 two	 individual	 sub-cycles	 known	 as 	 modulation	 cycle	 0	 ~	 modulation	 cycle	 1,	 denoted	 as	 i	 in	 the	 table.	 each 	 one	 of	 these	 two	 sub-cycles	 contains	128	clock	cycles.	in	this	mode,	a	modulation	frequency	increase	of	two	is	achieved.	 the	8-bit 	 pwm	 register	 value,	 which	 represents	 the	 overall	 duty	 cycle	 of	 the	 pwm	 waveform,	 is	 divided	 into	 two	 groups.	the	 frst	 group	 which	 consists	 of	 bit1~bit7	 is	 denoted	 here	 as	 the	 dc	 value.	the	 second	 group	 which	 consists	 of	 bit0	 is	 known	 as	 the	 ac	 value.	 in	 the	 7+1	 pwm	 mode,	 the	 duty	 cycle	 value	 of	each	of	the	two	modulation	sub-cycles	is	shown	in	the	following	table. parameter ac (0~1) dc (duty cycle) ?odulation c?cle i (i=0~1) i < ac dc+1 1?8 l& dc 1?8 7+1 mode modulation cycle values the	 following	 diagram	 illustrates	 the	 waveforms	 associated	 with	 the	 7+1	 mode	 pwm	 operation.	 it	 is	 important	 to	 note	 how	 the	 single	 pwm	 cycle	 is	 subdivided	 into	 2	 individual	 modulation	 cycles,	 numbered	0	and	1	and	how	the	 ac	value	is	related	to	the	pwm	value.

 rev. 1.10 64 ?a? 0?? ?01? rev. 1.10 65 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu pwm output control the	 pwm	 outputs	 are	 pin-shared	 with	 the	 i/o	 pins	 pa4, 	 pc2	 and	 pc3.	 to 	 operate	 as	 a	 pwm	 output	 and	 not	 as	 an	 i/o	 pin,	 the	 correct	 bits	 must	 be	 set	 in	 the	 ctrl0	 and	 ctrl2	 register. 	 a 	 zero	 value	 must	 also	 be	 written	 to	 the	 corresponding	 bit	 in	 the	 i/o	 port	 control	 register	 pac.4, 	 pcc.2	 and 	 pcc.3	 to	 ensure	 that	 the	 corresponding	 pwm	 output	 pin	 is	 setup	 as	 an	 output.	 after	 these	 two	 initial	 steps	 have	 been	 carried	 out,	 and	 of	 course	 after	 the	 required	 pwm	 value	 has	 been	 written	 into	 the	 pwmn	 register, 	 writing	 a	 high	 value	 to	 the	 corresponding	 bit	 in	 the	 output	 data	 register	 pa.4, 	 pc.2	 and	 pc.3	 will	 enable	 the	 pwm	 data 	 to	 appear	 on	 the	 pin.	 writing 	 a	 zero	 value	 will	 disable	 the	 pwm	 output	 function	 and	 force	 the	 output	 low. 	 in	 this	 way, 	 the	 port	 data	 output	 registers	 can	 be	 used	 as	 an	 on/off 	 control	 for	 the	 pwm	 function.	 note	 that	 if	 the	 ctrl0	 and	 ctrl2	 registers	 have	 selected	 the	 pwm	 function,	 but	 a	 high	 value	 has	 been	 written	 to	 its	 corresponding	 bit	 in	 the	 pac 	 or	 pcc	 control	 register	 to	 confgure	 the	 pin	 as	 an	 input,	 then	 the	 pin	 can	 still	 function	 as	 a	 normal	 input	 line,	 with	 pull-high	resistor	options.

 	 	

 	 � � ?

 	 �

 	 � 7+1 pwm mode pwm register for 7+1 mode pwm programming example 7kh iroorzlqj vdpsoh surjudp vkrzv krz wkh 3:0 rxwsxw lv vhwxs dqg frqwuroohg pry dk vhwxs 3:0 ydoxh ri ghflpdo mov pwm0,a h fuo hohf h 3:0 h h fuo hohf sl 3 dyh d 3:0 ifl fou sdf hs sl 3 d d s h sd hdeoh h 3:0 s : : fou sd ldeoh h 3:0 sb sl 3 iufh o

 rev. 1.10 66 ?a? 0?? ?01? rev. 1.10 67 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu analog to digital converter the	 need	 to	 interface	 to	 real	 world	 analog	 signals	 is	 a	 common	 requirement	 for	 many	 electronic 	 systems.	 however, 	 to	 properly	 process	 these	 signals	 by	 a	 ,	 they	 must	 frst	 be	 converted	 into	 digital	 signals	 by	 a/d	 converters.	 by	 integrating 	 the	 a/d	 conversion	 electronic 	 circuitry	 into	 the	 ,	 the	 need	 for	 external 	 components	 is	 reduced	 signifcantly	 with	 the	 corresponding	 follow-on	 benefts	 of	 lower	 costs	and	reduced	component	space	requirements. a/d overview the	 device	 contains	 an	 4/8-channel	 analog	 to	 digital	 converter	 which	 can	 directly	 interface	 to 	 external	 analog	 signals,	 such	 as	 that	 from	 sensors	 or	 other	 control	 signals	 and	 convert	 these	 signals	 directly	into	either	a	12-bit	digital	value. part no. input channels conversion bits input pins ht46r068b 16 1? pa0~pa3 pc0~pc1 pc6~pc7 pe0~pe7 ht46r069b the	 accompanying	 block	 diagram	 shows	 the	 overall	 internal	 structure	 of	 the	 a/d	 converter, 	 together	 with	its	associated	registers. a/d converter data registers C adrl, adrh the 	 device, 	 which 	 has 	 an 	 internal 	 12-bit 	 a/d 	 converter, 	 requires 	 two 	 data 	 registers, 	 a 	 high 	 byte 	 register, 	 known 	 as 	 adrh, 	 and 	 a 	 low 	 byte 	 register, 	 known 	 as 	 adrl. 	 after 	 the 	 conversion 	 process 	 takes	 place,	 these	 registers	 can	 be	 directly	 read	 by	 the	 microcontroller	 to	 obtain	 the	 digitised 	 conversion 	 value. 	 only 	 the 	 high 	 byte 	 register, 	 adrh, 	 utilises 	 its 	 full 	 8-bit 	 contents. 	 the 	 low 	 byte	 register	 utilises 	 only	 4	 bit	 of	 its	 8-bit	 contents	 as	 it	 contains	 only	 the	 lowest	 bits	 of	 the	 12-bit	 converted	value. in	the	following	table,	 d0~d11	is	the	 a/d	conversion	data	result	bits. register bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 adrl d3 d? d1 d0 adrh d11 d10 d9 d8 d7 d6 d5 d4 a/d data registers a/d converter control registers C adcr, acsr, ancsr1, ancsr0 to 	 control	 the	 function	 and	 operation 	 of	 the	 a/d	 converter, 	 four	 control	 registers	 known	 as	 adcr,	 acsr,	 ancsr1	 and	 ancsr0	 are	 provided.	 these	 8-bit	 registers	 define	 functions	 such	 as	 the 	 selection	 of	 which	 analog	 channel	 is	 connected	 to	 the	 internal	 a/d	 converter, 	 which	 pins	 are	 used 	 as	 analog	 inputs	 and	 which	 are	 used	 as	 normal	 i/os,	 the	 a/d	 clock	 source	 as	 well	 as	 controlling	 the	 start	function	and	monitoring	the	 a/d	converter	end	of	conversion	status. the	 acs3~acs0	 bits	 in	 the	 adcr	 register	 defne	 the	 channel	 number. 	 as	 the	 device	 contains	 only	 one	 actual 	 analog	 to	 digital	 converter	 circuit,	 each	 of	 the	 individual	 8	 analog	 inputs	 must	 be	 routed	 to	 the	 converter. 	 it	 is	 the	 function	 of	 the	 acs3~acs0	 bits	 in	 the	 adcr	 register	 to	 determine	 which	 analog	channel	is	actually	connected	to	the	internal	 a/d	 converter.

 rev. 1.10 66 ?a? 0?? ?01? rev. 1.10 67 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu the	 two	 control	 registers,	 ancsr1,ancsr0,	 determine	 which	 pins	 on	 pa0~pa3, 	 pc0,	 pc1, 	 pc6,	 pc7,	 pe0~pe7	 are	 used	 as	 analog	 inputs	 for	 the	 a/d	 converter	 and	 which	 pins	 are	 to	 be	 used	 as	 normal	 i/o	 pins.	 if	 the	 16-bit	 address	 on	 pcr15~pcr0	 has	 a	 value 	 of	 ffh,	 then	 all	 16	 pins,	 namely	 an0~an15	will	all	be	set	as	analog	inputs.	 to 	reduce	the	power	consumption	in	normal	run, 	 the	 adc	 module	 can	 be	 turned	 off 	 by	 setting	 adonb=1	 in	 acsr.	 once	 the	 adc	 module	 is	 turned	 off, 	 the	 adc	 module	 and	 analog	 channel	 have	 no	 power	 consumption	 no	 matter	 what	 voltage	 level	 is	 on	 analog	 input.	 if	 the	 i/o	 lines	 is	 selected	 as	 an	 i/o	 function	 and	 the	 analog	 input	 pin	 voltage	 is	 not	 equal	 to	 v dd 	 or	 v ss ,	 there	 user	 may	 have	 to	 take	 care	 idd/istb	 current	 consumed	 by	 the	 pin- shared	 logic	 input	 function	 no	 matter 	 the	 adc	 module	 is	 on	 or	 off. 	 if	 the	 adc	 module	 is	 turned	 off, 	 then	all	the	 adc	pin-shared	i/o	pins	will	be	setup	as	normal	i/os.

 	

 � ? ? ? ?? ?
? ? ?- - ?? ?
- ? ? ? ?? ?
 ? ? ? ?- - ??
- ? ?? - ? ?? ? ? ? ? a/d converter structure adrh, adrl register bit adrh adrl 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 name d11 d10 d9 d8 d7 d6 d5 d4 d3 d? d1 d0 r/w r r r r r r r r r r r r por x x x x x x x x x x x x "x" unknown unimplemented,	read	as	"0" 	 	 adc	conversion	data

 rev. 1.10 68 ?a? 0?? ?01? rev. 1.10 69 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? adcr register bit 7 6 5 4 3 2 1 0 name start eocb acs3 acs? acs1 acs0 r/w r/w r r/w r/w r/w r/w por 0 1 0 0 0 0 0 0 %lw start 6wduwwkh frhuvlr ::vwduw :uhvhwwkh frhuwhudgvhw2wr 7klvelwlvxvhgwrllwldwhd frhuvlrsurfhvv 7khelwlvrupdooorzexw livhwklkdgwkhfohduhgorzddlwkh frhuwhuzloollwldwhdfrhuvlr surfhvv :khwkhelwlvvhwklkwkh frhuwhuzlooehuhvhw lw eocb gri frhuvlrd frhuvlrhghg frhuvlrlsuruhvv 7klvuhdgrodlvxvhgwrlglfdwhzkhd frhuvlrsurfhvvkdv frpsohwhg :khwkhfrhuvlrsurfhvvlvuxlwkhelwzlooehklk lwlw xlpsohphwhguhdgdv lw acs3, acs2, acs1, acs0 6hohfw fkdho 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7khvh duh wkh fkdho vhohfw frwuro elwv v wkhuh lv ro rh lwhudo kdugzduh frhuwhu hdfkriwkhhlkw lsxwvpxvwehurxwhgwrwkhlwhudofrhuwhuxvlwkhvhelwv

 rev. 1.10 68 ?a? 0?? ?01? rev. 1.10 69 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? acsr register bit 7 6 5 4 3 2 1 0 name test adonb vrefs adcs? adcs1 adcs0 r/w r r/w r/w r/w r/w r/w por 1 1 0 0 0 0 %lw test iruwhvwprghxvhro lw adonb prgxohsrzhu rriifrwuroelw prgxohsrzhur prgxohsrzhu rii 7klv elw frwurov wkh srzhu wr wkh lwhudo ixfwlr 7klv elw vkrxog eh fohduhg wr hur wr hdeoh wkh frhuwhu ,i wkh elw lv vhw klk wkh wkh frhuwhu zloo eh vzlwfkhg rii uhgxfl wkh ghlfh srzhu frvxpswlr v wkh frhuwhu zloo frvxph d olplwhg dprxw ri srzhu hh zkh rw hhfxwl d frhuvlr wklv pd eh d lpsruwdw frvlghudwlr l srzhu vhvlwlh edwwhu srzhuhg dssolfdwlrv 1rwh ,w lv uhfrpphghg wr vhw adonb ehiruh hwhul wkh ,/6/3 0rgh iruvdl srzhu lw xlpsohphwhguhdgdv lw vrefs 6hohfw uhihuhfhrowdh 9 dd 95sl 7klv elw lv xvhg wr vhohfw wkh uhihuhfh rowdh iru wkh frhuwhu ,i wkh elw lv klk wkh wkh frhuwhu uhihuhfh rowdh lv vxssolhg r whk hwhudo 95 sl ,i wkh sl lv orz wkh wkh lwhudo uhihuhfh lv xvhg zklfk lv wdnh iurp wkh szrhu vxssosl 9 dd lw xlpsohphwhguhdgdv lw adcs2~adcs0 6hohfw frhuwhuforfnvrxufh vvwhpforfn vvwhpforfn vvwhpforfn xghhgfdwehxvhg vvwhpforfn vvwhpforfn vvwhpforfn xghhgfdwehxvhg 7khvhwkuhhelwvduhxvhgwrvhohfwwkhforfnvrxufhiruwkh frhuwhu

 rev. 1.10 70 ?a? 0?? ?01? rev. 1.10 71 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? ancsr0 register bit 7 6 5 4 3 2 1 0 name pcr7 pcr6 pcr5 pcr4 pcr3 pcr? pcr1 pcr0 r/w r/w r/w r/w r/w r/w r/w r/w r/w por 0 0 0 0 0 0 0 0 %lw pcr7 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr6 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr5 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr4 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr3 hh 3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr2 hh 3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr1 hh 3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr0 hh 3lv lsxwrurw 1rw lsxw lsxw 1

 rev. 1.10 70 ?a? 0?? ?01? rev. 1.10 71 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? ancsr1 register bit 7 6 5 4 3 2 1 0 name pcr15 pcr14 pcr13 pcr1? pcr11 pcr10 pcr9 pcr8 r/w r/w r/w r/w r/w r/w r/w r/w r/w por 0 0 0 0 0 0 0 0 %lw pcr15 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr14 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr13 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr12 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr11 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr10 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr9 hh3lv lsxwrurw 1rw lsxw lsxw 1 lw pcr8 hh3lv lsxwrurw 1rw lsxw lsxw 1 7kh 6757 elw l wkh uhlvwhu lv xvhg wr vwduw dg uhvhw wkh frhuwhu :kh wkh vhwv wklv elw iurp orz wr klk dg wkh orz ddl d ddor wr gllwdo frhuvlr ffoh zloo eh llwldwhg :kh wkh 6757 elw lv eurxkw iurp orz wr klk exw rw orz ddl wkh 2 elw l wkh 5 uhlvwhu zloo eh vhw wrd dg wkh ddor wr gllwdo frhuwhu zloo eh uhvhw,w lv wkh 6757 elw wkdwlvxvhg wr frwurowkhrhudoovwduwrshudwlrriwkhlwhudoddorwrgllwdo frhuwhu 7kh 2 elw l wkh 5 uhlvwhu lv xvhg wr lglfdwh zkh wkh ddor wr gllwdo frhuvlr surfhvv lv frpsohwh 7klv elw zloo eh dxwrpdwlfdoo vhw wr e wkh plfurfrwuroohu diwhu d frhuvlr ffoh kdv hghg , dgglwlr wkh fruuhvsrgl lwhuuxsw uhtxhvw d zloo eh vhw l wkh lwhuuxsw frwuro uhlvwhu dg li wkh lwhuuxswv duh hdeohg d dssursuldwh lwhudo lwhuuxsw vldo zloo eh hhudwhg 7klv lwhudo lwhuuxsw vldo zloo gluhfw wkh surudp iorz wr wkh dvvrfldwhg lwhudo lwhuuxsw dgguhvv iru surfhvvl ,i wkh lwhudo lwhuuxsw lv glvdeohg wkh plfurfrwuroohu fd eh xvhg wr sroo wkh 2 elw l wkh 5 uhlvwhu wr fkhfn zkhwkhu lw kdv ehh fohduhgdvddowhudwlhphwkrgrighwhfwlwkhhgrid frhuvlrffoh 7kh forfn vrxufh iru wkh frhuwhu zklfk rulldwhv iurp wkh vvwhp forfn i ss lv uvw gllghg e d gllvlr udwlr wkh doxh ri zklfk lv ghwhuplhg e wkh 6 6 dg 6 elwv l wkh 65 uhlvwhu

 rev. 1.10 7? ?a? 0?? ?01? rev. 1.10 73 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu controlling	 the	 power	 on/off 	 function 	 of	 the	 a/d	 converter	 circuitry	 is	 implemented	 using	 the	 value	 of	the	 adonb	bit. although	 the	 a/d	 clock	 source	 is	 determined	 by	 the	 system	 clock	 f sys ,	 and	 by	 bits	 adcs2, 	 adcs1	 and	 adcs0,	 there	 are	 some	 limitations	 on	 the	 maximum	 a/d	 clock	 source	 speed	 that	 can	 be	 selected.	 as	 the	 minimum	 value	 of	 permissible	 a/d	 clock	 period,	 t ad ,	 is	 0.5s,	 care	 must	 be 	 taken	 for	 system	 clock	 speeds	 in	 excess	 of	 4mhz.	 for	 system	 clock	 speeds	 in	 excess	 of	 4mhz,	 the	 adcs2,	 adcs1	 and	 adcs0	 bits	 should	 not	 be	 set	 to	 "000".	 doing	 so	 will	 give	 a/d	 clock	 periods	 that	 are 	 less	 than	 the	 minimum	 a/d	 clock	 period	 which 	 may	 result	 in	 inaccurate	 a/d	 conversion 	 values.	 refer	 to	 the	 following	 table	 for	 examples,	 where	 values	 marked	 with	 an	 asterisk	 *	 show 	 where, 	 depending	 upon	 the	 device,	 special 	 care	 must 	 be	 taken,	 as 	 the	 values 	 may	 be	 less 	 than	 the 	 specifed	minimum	 a/d	clock	period. f sys a/d clock period (t ad) adcs2, adcs1, adcs0=000 (f sys /2) adcs2, adcs1, adcs0=001 (f sys /8) adcs2, adcs1, adcs0=010 (f sys /32) adcs2, adcs1, adcs0=100 (f sys) adcs2, adcs1, adcs0=101 (f sys /4) adcs2, adcs1, adcs0=110 (f sys /16) adcs2, adcs1, adcs0=011, 111 1?hz ? s 8 s 3? s 1 s 4 s 16 s 8qghqhg ??hz 1 s 4 s 16 s 500ns ? s 8 s 8qghqhg 4?hz 500ns ? s 8 s qv 1 s 4 s 8qghqhg 8?hz qv 1 s 4 s qv 500ns ? s 8qghqhg 1??hz qv 667ns ?.67 s qv qv 1 s 8qghqhg a/d clock period examples a/d input pins all	 of	 the	 a/d	 analog	 input	 pins	 are	 pin-shared	 with	 the	 i/o	 pins	 on	 port	 a,	 port	 c	 and	 port	 e.	 bits	 pcr15~pcr0	 in	 the	 ancsr0	 and	 ancsr1	 registers,	 determine	 whether	 the	 input	 pins	 are	 setup	 as	 normal	 input/output	 pins	 or	 whether	 they	 are	 setup	 as	 analog	 inputs.	 in	 this	 way, 	 pins	 can	 be 	 changed	 under	 program	 control	 to	 change	 their	 function	 from	 normal	 i/o	 operation	 to	 analog	 inputs	 and	 vice	 versa.	 pull-high	 resistors,	 which	 are	 setup	 through	 register	 programming,	 apply	 to	 the	 input	 pins	 only	 when	 they	 are	 used	 as	 normal	 i/o	 pins,	 if	 setup	 as	 a/d	 inputs	 the	 pull-high	 resistors	 will	 be	 automatically	 disconnected.	 note	 that	 it	 is	 not	 necessary	 to	 frst	 setup	 the	 a/d	 pin	 as	 an	 input	 in	 the	 pac, 	 pcc	 and	 pec	 port	 control	 registers	 to	 enable	 the	 a/d	 input	 as	 when	 the	 pcr15~pcr0 	 bits	enable	an	 a/d	input,	the	status	of	the	port	control	register	will	be	overridden. summary of a/d conversion steps the	 following	 summarises	 the	 individual	 steps	 that	 should	 be	 executed	 in	 order	 to	 implement	 an	 a/ d	conversion	process. ?	 step	1 select	 the	 required	 a/d	 conversion	 clock	 by	 correctly	 programming	 bits	 adcs2,	 adcs1	 and 	 adcs0	in	the	 register. ?	 step	2 select	 which	 pins	 are	 to	 be	 used	 as	 a/d	 inputs	 and	 confgure	 them	 as	 a/d	 input	 pins	 by	 correctly	 programming	the	pcr15~pcr0	bits	in	the	 ancsr0,	 ancsr1	registers. ?	 step	3 enable	the	 a/d	by	clearing	the	 adonb	in	the	 acsr	register	to	zero.

 rev. 1.10 7? ?a? 0?? ?01? rev. 1.10 73 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ?	 step	4 select	 which	 channel	 is	 to	 be	 connected	 to	 the	 internal	 a/d	 converter	 by	 correctly	 programming	 the	 acs3~acs0	bits	which	are	also	contained	in	the	 register. ?	 step	5 if	 the	 interrupts	 are	 to	 be	 used,	 the	 interrupt	 control	 registers	 must	 be	 correctly	 configured	 to 	 ensure	 the	 a/d	 converter	 interrupt	 function	 is	 active.	 the	 master	 interrupt 	 control	 bit,	 emi,	 the	 intc0	 interrupt	 control	 register	 must	 be	 set	 to	 1,	 the	 a/d	 converter 	 interrupt	 bit,	 ade,	 must	 also	be	set	to	1. ?	 step	6 the	 analog	 to	 digital	 conversion	 process	 can	 now	 be	 initialised	 by	 setting	 the	 start 	 bit	 in 	 the	 adcr	 register	 from	 0	 to	 1	 and	 then	 to	 0	 again.	 note	 that	 this	 bit	 should	 have	 been 	 originally	set	to	0. ?	 step	7 to 	 check	 when	 the	 analog	 to	 digital	 conversion	 process	 is	 complete,	 the	 eocb	 bit	 in	 the	 adcr	 register	 can 	 be	 polled. 	 the 	 conversion	 process 	 is	 complete 	 when	 this 	 bit 	 goes	 low. 	 when	 this 	 occurs	 the	 a/d	 data	registers	 adrl 	 and	 adrh	 can	 be	 read	 to	 obtain	the	 conversion	 value.	 as	 an	 alternative	 method 	 if	 the	 interrupts	 are	 enabled	 and	 the	 stack	 is	 not	 full,	 the	 program	 can	 wait	 for	 an	 a/d	interrupt	to	 occur. note:	 when	checking	for	the	end	of	the	conversion	process,	if	the	method	of	polling	the	eocb	bit	 in	the	 adcr	register	is	used,	the	interrupt	enable	step	above	can	be	omitted. the	 accompanying	 diagram	 shows	 graphically	 the	 various	 stages	 involved	 in	 an	 analog	 to	 digital 	 conversion	process	and	its	associated	timing. the	 setting	 up	 and	 operation	 of	 the	 a/d	 converter	 function	 is	 fully	 under	 the	 control	 of	 the 	 application	program	as	there	are	no	confguration	options	associated	with	the	 a/d	 converter.	 after	an 	 a/d	 conversion	 process	 has	 been	 initiated	 by	 the	 application	 program,	 the	 microcontroller	 internal	 hardware	 will	 begin	 to	 carry	 out	 the	 conversion,	 during	 which	 time	 the	 program	 can	 continue	 with	 other	 functions.	 the	 time	 taken	 for	 the	 a/d	 conversion	 is	 16t ad 	 where	 t ad 	 is	 equal	 to	 the	 a/d	 clock	 period. programming considerations when	 programming, 	 special	 attention	 must	 be	 given	 to	 the	 pcr[15:0]	 bits	 in	 the 		 register. 	 if	 these	 bits	 are	 all	 cleared	 to	 zero	 no	 external	 pins	 will	 be	 selected	 for	 use	 as	 a/d	 input	 pins	 allowing	 the	 pins 	 to 	 be 	 used 	 as 	 normal 	 i/o 	 pins. 	 when 	 this 	 happens 	 the 	 internal 	 a/d 	 circuitry 	 will 	 be 	 power 	 down.	 setting	 the	 adonb	 bit	 high	 has	 the	 ability	 to	 power	 down	 the	 internal	 a/d	 circuitry, 	 which	 may	be	an	important	consideration	in	power	sensitive	applications. a/d transfer function as	 the	 device	 contain	 a	 12-bit	 a/d	 converter, 	 its	 full-scale	 converted	 digitised	 value	 is	 equal	 to 	 fffh.	 since	 the	 full-scale 	 analog	 input	 value	 is	 equal	 to	 the	 v dd 	 voltage,	 this	 gives	 a	 single	 bit 	 analog	 input	 value	 of	 v dd /4096.	 the	 diagram	 show	 the	 ideal	 transfer	 function	 between	 the	 analog 	 input	value	and	the	digitised	output	value	for	the	 a/d	 converter. note	 that	 to	 reduce	 the	 quantisation	 error, 	 a	 0.5	 lsb	 offset 	 is	 added	 to	 the	 a/d	 converter	 input. 	 except	 for	 the	 digitised	 zero	 value,	 the	 subsequent	 digitised	 values	 will	 change	 at	 a	 point	 0.5	 lsb	 below	 where	 they	 would	 change	 without	 the	 offset, 	 and	 the	 last	 full	 scale	 digitised	 value	 will	 change	 at	a	point	1.5	lsb	below	the	 v dd 	level.

 rev. 1.10 74 ?a? 0?? ?01? rev. 1.10 75 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

	

 � ?? ? ?
 ? ??? ? ? ? ? ? - ? ? ??
?
 ? ?
?
 ? ?
?
 ? ?
?
 ?
?
 ?
 ?? ? ? ?
 ? ? � ? ?

 ?
 ?
 ? � ? ?
 ?? 	? 	? ? 	? ?
 a/d conversion timing

	

 	
� 	
�
�
� ? ? ? ? ?
 ? ?? ?
� ? ideal a/d transfer function

 rev. 1.10 74 ?a? 0?? ?01? rev. 1.10 75 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu a/d programming example the	 following	 two	 programming	 examples	 illustrate	 how	 to	 setup	 and	 implement	 an	 a/d 	 conversion.	 in	 the	 frst	 example,	 the	 method	 of	 polling	 the	 eocb 		 bit	 in	 the	 adcr	 register	 is	 used	 to 	 detect 	 when	 the 	 conversion	 cycle 	 is	 complete,	 whereas	 in	 the 	 second	 example,	 the 	 a/d 	 interrupt 	 is	 used	to	determine	when	the	conversion	is	complete. example: using an eocb polling method to detect the end of conversion clr eadi ; disable adc interrupt mov a,00000001b y6d hohf i sys /8 as a/d clock and adonb=0 mov a,0fh ; hs 16 d 16 fuh sl 1a1 y 1 6 d mov a, 00h y 1 6 d mov a,00000000b ; y'd select an0 to be connected to the a/d converter : 6dubfyhul fou677 h677 uhh ' fou677 du ' 3oolb2 2 soo h ' uhlhu 2 el hhf h ; of a/d conversion ssoolb2 flh sool yd'/ uhd o eh fyhul uho ydoh yduobeiihud dyh uho hu hh uhlhu yd' uhd l eh fyhul uho ydoh ydubeiihud dyh uho hu hh uhlhu : sdubfyhul du h ' fyhul note:	 to 	power	 off	 adc	module,	it	is	necessary	to	set	 adonb	as	"1".

 rev. 1.10 76 ?a? 0?? ?01? rev. 1.10 77 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu example: using the interrupt method to detect the end of conversion clr eadi ; disable adc interrupt mov a,00000001b 	 mov	acsr,a	 	 	 	 ; 	 select 	 f sys /8 as a/d clock and adonb=0 mov a,0fh ; setup 	 ancsr0 	 and 	 ancsr1 	 to 	 confgure 	 pins 	 an0~an3 	 m o v 	a n c s r 0 , a 	 	 mov a, 00h 	 m o v 	a n c s r 1 , a 	 	 	 ; mov a,00000000b ; 	 mov	adcr, 	 a		 	 	 ; 	 select an0 to be connected to the a/d converter : start_conversion: 	 clr	start 	 set	start	 	 	 	 ; 	 reset 	 a/d 	 clr	start	 	 	 	 ; 	 start 	 a/d 	 clr	adf		 	 	 	 ; 	 clear 	 adc 	 interrupt 	 request 	 fag set eadi ; enable adc interrupt 	 set	emi 	 	 	 	 	 ; 	 enable 	 global 	 interrupt : : ; adc interrupt service routine adc_: 	 mov	acc_stack,a 	 	 	 ; 	 save 	 acc 	 to 	 user 	 defned 	 memory mov a,status 	 mov	status_stack,a 	 	 ; 	 save 	 status 	 to 	 user 	 defned 	 memory : : 	 mov	a,adrl 	 		 	 	 ; 	 read 	 low 	 byte 	 conversion 	 result 	 value 	 mov	adrl_buffer,a	 	 ; 	 save 	 result 	 to 	 user 	 defned 	 register 	 mov	a,adrh 	 		 	 	 ; 	 read 	 high 	 byte 	 conversion 	 result 	 value 	 mov	adrh_buffer,a 	 		 ; 	 save 	 result 	 to 	 user 	 defned 	 register : : exit_isr: 	 mov	a,status_stack 	 mov	status,a 	 	 	 	 ; 	 restore 	 status 	 from 	 user 	 defned 	 memory 	 mov	a,acc_stack	 	 ; 	 restore 	 acc 	 from 	 user 	 defned 	 memory 	 clr	adf					; 	 clear 	 adc 	 interrupt 	 fag reti 1h 7 shu ii 'ohllhfhduh '21d

 rev. 1.10 76 ?a? 0?? ?01? rev. 1.10 77 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu interrupts interrupts 	 are	 an	 important	 part	 of	 any	 microcontroller	 system. 	 when	 an	 external	 event	 or	 an 	 internal	 function	 such	 as	 a	 timer/event 	 counter	 or	 time 	 base	 requires	 microcontroller	 attention, 	 their	 corresponding	 interrupt	 will	 enforce	 a	 temporary	 suspension	 of	 the	 main	 program	 allowing	 the	 microcontroller	to	direct	attention	to	their	respective	needs. the	device	contains	a	single	external	interrupt	and	multiple	internal	interrupts.	 the	external	interrupt 	 is	 controlled 	 by	 the	 action	 of	 the	 external	 interrupt	 pin,	 while	 the	 internal	 interrupts	 are	 generated	 by	 the	various	functions	such	as	 timer/event 	counters,	and	 time 	base. interrupt register overall	 interrupt	 control,	 which	 means	 interrupt	 enabling	 and	 request	 flag	 setting,	 is	 controlled 	 by	 using	 two	 registers,	 intc0	 and	 intc1.	 by	 controlling	 the	 appropriate	 enable	 bits	 in	 this 	 registers	 each	 individual	 interrupt	 can	 be	 enabled	 or	 disabled.	 also	 when	 an	 interrupt	 occurs,	 the 	 corresponding 	 request 	 fag 	 will 	 be	 set 	 by	 the	 microcontroller. 	 the	 global	 enable	 fag 	 if	 cleared	 to 	 zero	will	disable	all	interrupts. ?	 intc0 register bit 7 6 5 4 3 2 1 0 name t1f t0f eif et1i et0i eei e?i r/w r/w r/w r/w r/w r/w r/w r/w por 0 0 0 0 0 0 0 bit	 7	 	 unimplemented,	read	as	0 bit	 6	 	 t1f :	 timer/event 	counter	1	interrupt	request	fag 	 		0:	inactive 	 		1:	active bit	 5	 	 t0f :	 timer/event 	counter	0	interrupt	request	fag 	 		0:	inactive 	 		1:	active bit	 4	 	 eif :	external	interrupt	request	fag 	 		0:	inactive 	 		1:	active bit	 3	 	 et1i :	 timer/event 	counter	1	interrupt	enable 	 		0:	disable 	 		1:	enable bit	 2	 	 et0i :	 timer/event 	counter	0	interrupt	enable 	 		0:	disable 	 		1:	enable bit	 1	 	 eei :	external	interrupt	enable 	 		0:	disable 	 		1:	enable bit	 0	 	 emi :	master	interrupt	global	enable 	 		0:	disable 	 		1:	enable

 rev. 1.10 78 ?a? 0?? ?01? rev. 1.10 79 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? intc1 register bit 7 6 5 4 3 2 1 0 name p ?ff adf t?f p e?fi eadi et?i r/w p r/w r/w r/w p r/w r/w r/w por p 0 0 0 p 0 0 0 bit	 7	 	 unimplemented,	read	as	0 bit	 6	 	 mff :	multi-function	interrupt	request	fag 	 		0:	inactive 	 		1:	active bit	 5	 	 adf :	 a/d	converter	interrupt	request	fag 	 		0:	inactive 	 		1:	active bit	 4	 	 t2f :	 timer/event 	counter	2	interrupt	request	fag 	 		 0:	inactive 	 		1:	active bit	 3	 	 unimplemented,	read	as	0 bit	 2	 	 emfi :	multi-function	interrupt	enable 	 		0:	disable 	 		1:	enable bit	 1	 	 eadi :	 a/d	converter	interrupt	enable	 	 		0:	disable 	 		1:	enable bit	 0	 	 et2i :	 timer/event 	counter	2	interrupt	enable 	 		0:	disable 	 		1:	enable ? mfic register bit 7 6 5 4 3 2 1 0 name p sif si?f tbf p esii esi? etbi r/w p r/w r/w r/w p r/w r/w r/w por p 0 0 0 p 0 0 0 bit	 7	 	 unimplemented,	read	as	0 bit	6	 sif :	spia 	interrupt	request	fag 	 		0:	inactive 	 		1:	active bit	5	 simf :	sim	interrupt	request	fag 	 		0:	inactive 	 		1:	active bit	4	 tbf :	 time 	base	interrupt	request	fag 	 		0:	inactive 	 		1:	active bit	 3	 	 unimplemented,	read	as	0 bit	2	 esii :	spia 	interrupt	enable 	 		0:	disable 	 		1:	enable bit	1	 esim :	sim	interrupt	enable	 	 		0:	disable 	 		1:	enable bit	0	 etbi :	 time 	base	interrupt	enable 	 		0:	disable 	 		1:	enable

 rev. 1.10 78 ?a? 0?? ?01? rev. 1.10 79 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu interrupt operation a 	 timer/event 	 counter 	 overflow, 	 an 	 active 	 edge 	 on 	 the 	 external 	 interrupt 	 pin, 	 a 	 serial 	 data 	 byte 	 transmitted 	 or	 received 	 completion, 	 or	 a 	 time 	 base 	 event 	 will 	 all 	 generate 	 an 	 interrupt 	 request 	 by 	 setting	 their	 corresponding	 request	 flag,	 if	 their	 appropriate	 interrupt	 enable	 bit	 is	 set.	 when	 this 	 happens,	 the	 program	 counter, 	 which	 stores	 the	 address	 of	 the	 next	 instruction	 to	 be	 executed,	 will	 be	 transferred	 onto	 the	 stack.	 the	 program	 counter	 will	 then	 be	 loaded	 with	 a	 new	 address	 which	 will	 be	 the	 value	 of	 the	 corresponding	 interrupt	 vector. 	 the	 microcontroller	 will	 then	 fetch	 its	 next	 instruction	 from	 this 	 interrupt	 vector. 	 the	 instruction 	 at	 this 	 vector	 will 	 usually 	 be	 a	 jmp 	 statement 	 which 	 will 	 jump	 to	 another	 section	 of	 program	 which	 is	 known	 as	 the	 interrupt	 service	 routine.	 here	 is	 located 	 the	 code	 to	 control	 the	 appropriate	 interrupt.	 the	 interrupt	 service	 routine	 must	 be	 terminated	 with	 a 	 reti	 instruction,	 which	 retrieves	 the	 original	 program	 counter	 address	 from	 the	 stack	 and	 allows	 the	 microcontroller	to	continue	with	normal	execution	at	the	point	where	the	interrupt	occurred. the	 various	 interrupt	 enable	 bits,	 together	 with	 their	 associated	 request	 flags,	 are	 shown	 in	 the 	 following	diagram	with	their	order	of	 priority.

 	 	

 �? ? ? ? ? ?

 �? ? ? ? ? - ? ?? ?
 - ? ? ? ? ? ? ?

 �? ? ? ? ? ?

 �? ? ? ? ? ? ?

 �? ? ? 	

 �? ? ? ? ?
 ? ? ? ? ?
 ? ?

 �? ?

 �? ? - ? ?

 �? ?
 ? once	 an	 interrupt	 subroutine	 is	 serviced,	 all	 the	 other	 interrupts	 will	 be	 blocked,	 as	 the	 emi	 bit	 will	 be	 cleared	 automatically. 	 this	 will	 prevent	 any	 further	 interrupt	 nesting	 from	 occurring.	 however, 	 if	 other	 interrupt	 requests	 occur	 during	 this	 interval,	 although	 the	 interrupt 	 will	 not	 be	 immediately	 serviced,	the	request	fag	will	still	be	recorded.	if	an	interrupt	requires	immediate	servicing	while	the	 program	 is	 already 	 in	 another	 interrupt	 service	 routine,	 the	 emi	 bit	 should	 be	 set	 after	 entering	 the	 routine,	to	 allow	 interrupt	nesting.	 if	 the	 stack	 is	 full,	 the	 interrupt	request	 will	 not	 be	 acknowledged,	 even	 if	 the	 related 	 interrupt	 is	 enabled,	 until	 the	 stack	 pointer	 is	 decremented.	 if	 immediate	 service	 is	desired,	the	stack	must	be	prevented	from	becoming	full.

 rev. 1.10 80 ?a? 0?? ?01? rev. 1.10 81 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu when	 an	 interrupt	 request	 is	 generated	 it	 takes	 2	 or	 3	 instruction	 cycle	 before	 the	 program	 jumps 	 to	 the	 interrupt	 vector. 	 if	 the	 device	 is	 in	 the	 sleep	 or	 idle	 mode	 and	 is	 woken	 up	 by	 an	 interrupt 	 request	then	it	will	take	3	cycles	before	the	program	jumps	to	the	interrupt	 vector. wait for ? ~ 3 instruction c?cles ?ain program isr entr? ? ? enable bit set ? ?ain program reti (it will set e?i automaticall?) automaticall? disable interrupt clear e?i & request flag n y interrupt flow interrupt priority interrupts,	 occurring 	 in	 the	 interval 	 between	 the	 rising	 edges	 of	 two	 consecutive	 t2	 pulses,	 will	 be	 serviced 	 on	 the	 latter	 of	 the	 two	 t2	 pulses,	 if	 the	 corresponding	 interrupts	 are	 enabled.	 in	 case	 of 	 simultaneous	 requests,	 the	 following	 table	 shows	 the	 priority	 that	 is	 applied.	 these	 can	 be	 masked	 by	resetting	the	emi	bit. interrupt source priority vector external interrupt 1 04h 7lphu(yhqw&rxqwhu?yhurz ? 08h 7lphu(yhqw&rxqwhu?yhurz 3 0ch 7lphu(yhqw&rxqwhu?yhurz 4 10h a/d interrupt 5 14h ?ulti-function interrupt (time base ? si?? spia) 6 18h in	 cases	 where	 both	 external	 and	 internal	 interrupts	 are	 enabled	 and	 where	 an	 external	 and	 internal	 interrupt	 occurs	 simultaneously, 	 the	 external	 interrupt	 will	 always	 have	 priority	 and	 will	 therefore	 be	 serviced	 frst.	 suitable	 masking	 of	 the	 individual	 interrupts	 using	 the	 interrupt	 registers	 can	 prevent	 simultaneous	occurrences.

 rev. 1.10 80 ?a? 0?? ?01? rev. 1.10 81 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu external interrupt for	 an	 external	 interrupt	 to	 occur, 	 the	 global	 interrupt	 enable	 bit,	 emi,	 and	 external	 interrupt	 enable	 bit,	 inte,	 must	 frst	 be	 set.	 an	 actual	 external	 interrupt	 will	 take	 place	 when	 the	 external	 interrupt 	 request	 fag,	 intf, 	 is	 set,	 a	 situation	 that	 will	 occur	 when	 an	 edge	 transition	 appears	 on	 the	 external	 int 	 line. 	 the 	 type 	 of 	 transition 	 that 	 will 	 trigger 	 an 	 external 	 interrupt, 	 whether 	 high 	 to 	 low, 	 low 	 to 	 high	 or	 both	 is	 determined	 by	 the	 integ0	 and	 integ1	 bits,	 which	 are	 bits	 6	 and	 7	 respectively, 	 in	 the	ctrl1	control	 register.	 these	two	bits	can	also	disable	the	external	interrupt	function. integ1 integ0 edge trigger type 0 0 external interrupt disable 0 1 rising edge trigger 1 0 falling edge trigger 1 1 both edge trigger the	 external	 interrupt	 pin	 is	 pin-shared	 with	 the	 i/o	 pin	 pa3 	 and	 can	 only	 be	 configured	 as	 an 	 external 	 interrupt 	 pin 	 if 	 the 	 corresponding 	 external 	 interrupt 	 enable 	 bit 	 in 	 the 	 intc0 	 register 	 has 	 been 	 set 	 and 	 the 	 edge 	 trigger 	 type 	 has 	 been 	 selected 	 using 	 the 	 ctrl1 	 register. 	 the 	 pin 	 must 	 also 	 be 	 setup 	 as 	 an 	 input 	 by 	 setting 	 the 	 corresponding 	 pac.3 	 bit 	 in 	 the 	 port 	 control 	 register. 	 when 	 the 	 interrupt	is	enabled,	the	 stack	is	not	full	and	an	active	 transition	appears 	on	the	external	interrupt	pin, 	 a	 subroutine	 call	 to	 the	 external	 interrupt	 vector	 at	 location	 04h,	 will	 take	 place.	 when	 the	 interrupt	 is	 serviced, 	 the	 external	 interrupt	 request	 fag,	 eif, 	 will	 be	 automatically	 reset	 and	 the	 emi	 bit	 will	 be	 automatically	 cleared	 to	 disable	 other	 interrupts.	 note	 that	 any	 pull-high	 resistor	 connections	 on	 this	pin	will	remain	valid	even	if	the	pin	is	used	as	an	external	interrupt	input. timer/event counter interrupt for	 a	 timer/event 	 counter	 interrupt	 to	 occur, 	 the	 global	 interrupt	 enable	 bit,	 emi,	 and	 the 	 corresponding	 timer	 interrupt	 enable	 bit,	 tne,	 must	 first	 be	 set.	 an	 actual	 timer/event 	 counter 	 interrupt	 will	 take	 place	 when	 the	 timer/event 	 counter	 request	 fag,	 tnf, 	 is	 set,	 a	 situation	 that	 will	 occur	 when	 the	 relevant	 timer/event 	 counter	 overfows.	 when	 the	 interrupt	 is	 enabled,	 the	 stack	 is	 not	 full	 and	 a	 timer/event 	 counter	 n	 overfow	 occurs,	 a	 subroutine	 call	 to	 the	 relevant	 timer	 interrupt	 vector, 	 will 	 take 	 place. 	 when 	 the 	 interrupt 	 is 	 serviced, 	 the 	 timer 	 interrupt 	 request 	 fag, 	 tnf, 	 will 	 be 	 automatically	reset	and	the	emi	bit	will	be	automatically	cleared	to	disable	other	interrupts. multi-function interrupt unlike	 the	 other	 independent	 interrupts, 	 the	 multi-function	 interrupt	 has	 no	 independent	 source,	 but	 rather	is	formed	from	other	existing	interrupt	sources,	namely	the	 time-base 	interrupt,	sim	interrupt 	 and	 spia 	 interrupt.	 a 	 multi-function	 interrupt	 request	 will	 take	 place	 when	 the	 multi-function 	 interrupt	 request	 fag,	 mff	 is	 set.	 the	 multi-function	 interrupt	 fag	 will	 be	 set	 when	 any	 of	 their 	 included	functions	generate	an	interrupt	request	fag.	 to 	allow	the	program	to	branch	to	its	respective 	 interrupt	 vector	 address,	 when	 the	 multi-function	 interrupt	 is	 enabled	 and	 the	 stack	 is	 not	 full,	 and	 either	 one	 of	 the	 interrupts	 contained	 within 	 each	 of	 multi-function 	 interrupt	 occurs, 	 a	 subroutine 	 call	 to	 the	 multi-function	 interrupt	 vector	 will	 take	 place.	 when	 the	 interrupt	 is	 serviced,	 the	 multi- function 	 interrupt	 request 	 flag	 will 	 be	 automatically	 reset	 and	 the	 emi 	 bit	 will 	 be	 automatically 	 cleared	 to	 disable	 other	 interrupts.	 however, 	 it	 must	 be	 noted	 that,	 although	 the	 multi-function 	 interrupt	 fag	 will	 be	 automatically	 reset	 when	 the	 interrupt	 is	 serviced,	 the	 request	 fags	 from	 the 	 original	 source	 of	 the	 multi-function	 interrupt,	 namely	 the	 time-base 	 interrupt,	 sim	 interrupt 	 and 	 spia 	 interrupt 	 will 	 not 	 be 	 automatically 	 reset 	 and 	 must 	 be 	 manually 	 reset 	 by 	 the 	 application 	 program.	 after	 a	 multi-function	 has	 been	 generated,	 the	 application	 program	 can	 determine	 which	 interrupt	 source	 has	 occurred	 by	 interrogating	 the	 interrupt	 request	 fags,	 sif, 	 simf	 or	 tbf	 within	 the	mfic	 register.

 rev. 1.10 8? ?a? 0?? ?01? rev. 1.10 83 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu programming considerations by	 disabling 	 the 	 relevant 	 interrupt 	 enable 	 bits, 	 a 	 requested 	 interrupt 	 can 	 be 	 prevented 	 from 	 being 	 serviced, 	 however, 	 once 	 an 	 interrupt 	 request 	 flag 	 is 	 set, 	 it 	 will 	 re- 	 main 	 in 	 this 	 condition 	 in 	 the 	 interrupt	 register	 until	 the	 corresponding	 interrupt	 is	 serviced	 or	 until	 the	 request	 fag	 is	 cleared	 by	 the	application	program.	 where	 a	 certain	 interrupt	 is 	 contained	 within 	 the	 multi-function 	 interrupt,	 then	 when 	 the 	 interrupt	 service	 routine	 is	 executed,	 as	 only	 the	 multi-function	 interrupt	 request	 fag,	 mff, 	 will 	 be	 automatically	 cleared,	 the	 individual	 request	 flag	 for	 the	 function	 needs	 to	 be	 cleared	 by	 the 	 application	program. it	 is 	 recommended	 that	 programs	 do	 not	 use 	 the	 call 	 instruction 	 within 	 the	 interrupt	 service 	 subroutine.	 interrupts	 often	 occur	 in	 an	 unpredictable	 manner	 or	 need	 to	 be	 serviced	 immediately. 	 if	 only	 one	 stack	 is	 left	 and	 the	 interrupt 	 is	 not	 well	 controlled,	 the	 original	 control	 sequence	 will	 be	 damaged	once	a	call 	subroutine	is	executed	in	the	interrupt	subroutine. every 	 interrupt 	 has 	 the 	 capability 	 of 	 waking 	 up 	 the 	 microcontroller 	 when 	 it 	 is 	 in 	 sleep 	 or 	 idle 	 mode,	 the	 wake	 up	 being	 generated	 when	 the	 interrupt	 request	 fag	 changes	 from	 low	 to	 high.	 if	 it	 is	 required	 to	 prevent	 a	 certain	 interrupt 	 from	 waking	 up	 the	 microcontroller 	 then	 its	 respective	 request	 fag	should	be	frst	set	high	before	entering	the	sleep 	or	idle	mode. as	 only	 the	 program	 counter	 is	 pushed	 onto	 the	 stack,	 then	 when	 the	 interrupt	 is	 serviced,	 if	 the 	 contents	 of	 the	 accumulator, 	 status	 register	 or	 other	 registers	 are	 altered	 by	 the	 interrupt	 service 	 program, 	 their 	 contents 	 should 	 be 	 saved 	 to 	 the 	 memory 	 at 	 the 	 beginning 	 of	 the 	 interrupt 	 service 	 routine.	 to 	return	from	an	interrupt	subroutine,	either	a	ret 	or	reti	instruction	may	be	executed.	 the	reti 	 instruction	 in	 addition	 to	 executing	 a	 return	 to	 the	 main	 program	 also	 automatically	 sets	 the	 emi 	 bit	 high	 to	 allow	 further	 interrupts.	 the	 ret 	 instruction	 however	 only	 executes	 a	 return	 to	 the	 main	 program	 leaving	 the	 emi	 bit	 in	 its	 present	 zero	 state	 and	 therefore	 disabling	 the	 execution	 of	 further	 interrupts.

 rev. 1.10 8? ?a? 0?? ?01? rev. 1.10 83 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu lcd scom function the	 devices	 have	 the	 capability	 of	 driving	 external	 lcd	 panels.	 the	 common	 pins	 for	 lcd	 driving,	 scom0~scom3,	 are	 pin	 shared	 with	 the	 pb0~	 pb3	 pins.	 the	 lcd	 signals,	 com	 and	 seg,	 are 	 generated	using	the	application	program.	 lcd operation an	external	lcd	panel	can	be	driven	using	this	device	by	confguring	the	pb0~pb3	pins	as	common 	 pins 	 and 	 using 	 other 	 output 	 ports	 lines 	 as 	 segment 	 pins. 	 the 	 lcd 	 driver 	 function 	 is 	 controlled 	 using	 the	 scomc	 register	 which	 in	 addition	 to	 controlling	 the	 overall 	 on/off 	 function	 also	 controls	 the	 bias	 voltage	 setup	 function.	 this	 enables	 the	 lcd	 com	 driver	 to	 generate	 the	 necessaryv dd /2	 voltage	 levels	 for	 lcd	 1/2	 bias	 operation.	 the	 scomen	 bit	 in	 the	 scomc	 register	 is	 the	 overall	 master	 control	 for	 the	 lcd	 driver, 	 however	 this	 bit	 is	 used	 in	 conjunction	 with	 the	 comnen	 bits	 to	 select	 which	 port	 b	 pins	 are	 used	 for	 lcd	 driving.	 note	 that	 the	 port	 control	 register	 does	 not	 need	 to	frst	setup	the	pins	as	outputs	to	enable	the	lcd	driver	operation.

 	

 scom circuit scomen comnen pin function o/p level 0 x i/o 0 or 1 1 0 i/o 0 or 1 1 1 sco?n v dd /? output control

 rev. 1.10 84 ?a? 0?? ?01? rev. 1.10 85 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu lcd bias control the	 lcd	 com	 driver	 enables	 a	 range	 of	 selections	 to	 be	 provided	 to	 suit	 the	 requirement	 of	 the 	 lcd	 panel	 which	 is	 being	 used.	 the	 bias	 resistor	 choice	 is	 implemented	 using	 the	 isel1	 and	 isel0	 bits	in	the	scomc	 register. ?	 scomc register bit 7 6 5 4 3 2 1 0 name isel1 isel0 sco?en co?3en co??en co?1en co?0en r/w r/w r/w r/w r/w r/w r/w r/w r/w por 0 0 0 0 0 0 0 0 bit	 7	 reserved	bit 	 		1:	unpredictable	operation	-	bit	must	not 	be	set	high 	 		0:	correct	level	-	bit	must	be	reset	to	zero	for	correct	operation bit	6,5	 isel1, isel0 :	scom	operating	current	selection	(v =5v) 	 	 	 		00:	25a 	 	 	 		01:	50a 	 	 	 		10:	100a 	 	 	 		 11:	200a bit	 4	 	 scomen :	scom	module	 on/off	control 	 	 	 		0:	disable 	 	 	 		1:	enable 	 	 	 scomn 	can	be	enable	by	comnen	if	scomen=1 bit	 3	 	 com3en :	pb3	or	scom3	selection 	 	 	 		0:	i/o 	 	 	 		1:	scom3 bit	 2	 	 com2en :	pb2	or	scom2	selection 	 	 	 		0:	i/o 	 	 	 		1:	scom2 bit	 1	 	 com1en :	pb1	or	scom1	selection 	 	 	 		0:	i/o 	 	 	 		1:	scom1 bit	 0	 	 com0en :	pb0	or	scom0	selection 	 	 	 		0:	i/o 	 	 	 		1:	scom0

 rev. 1.10 84 ?a? 0?? ?01? rev. 1.10 85 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu serial interface module C sim these	 devices	 contain	 a	 serial	 interface	 module,	 which	 includes	 both	 the	 four	 line	 spi	 interface	 or	 the	 two	 line	 i 2 c	 interface	 types,	 to	 allow	 an	 easy	 method	 of	 communication	 with	 external	 peripheral	 hardware. 	 having 	 relatively 	 simple 	 communication 	 protocols, 	 these 	 serial 	 interface 	 types 	 allow 	 the	 microcontroller	 to	 interface	 to	 external	 spi	 or	 i 2 c	 based	 hardware	 such	 as	 sensors,	 flash	 or 	 eeprom	 memory, 	 etc.	 the	 sim	 interface	 pins	 are	 pin-shared	 with	 other	 i/o	 pins	 therefore	 the	 sim	 interface	 function	 must	 frst	 be	 selected	 using	 a	 confguration	 option.	 as	 both	 interface	 types	 share	 the	 same	 pins	 and	 registers,	 the	 choice	 of	 whether	 the	 spi	 or	 i 2 c	 type	 is	 used	 is	 made	 using	 the	 sim	 operating	 mode	 control	 bits,	 named	 sim2~sim0,	 in	 the	 simc0	 register. 	 these	 pull-high	 resistors	 of	 the	 sim	 pin-shared	 i/o	 are	 selected	 using	 pull-high	 control	 registers,	 and	 also	 if	 the	 sim	 function	 is	 enabled. spi interface this	spi	interface	function	which	is	part	of	the	serial	interface	module,	should	not	be	confused	with	 the	 other	 independent	 spi	 function,	 known	 as	 spia,	 which	 is	 described	 in	 another	 section	 of	 this 	 datasheet.	 the	 spi	 interface	 is	 often	 used	 to	 communicate	 with	 external	 peripheral	 devices	 such	 as	 sensors, 	 flash	 or	 eeprom	 memory	 devices	 etc.	 originally	 developed	 by	 motorola,	 the	 four	 line	 spi 	 interface	 is	 a	 synchronous	 serial	 data	 interface	 that	 has	 a	 relatively	 simple	 communication	 protocol	 simplifying	the	programming	requirements	when	communicating	with	external	hardware	devices. the	 communication	 is	 full	 duplex	 and	 operates	 as	 a	 slave/master	 type,	 where	 the	 device	 can	 be 	 either	 master 	 or	 slave. 	 although 	 the	 spi 	 interface	 specifcation 	 can	 control	 multiple	 slave 	 devices 	 from	 a	 single	 master, 	 but	 this	 device	 provided	 only	 one	 scs 	 pin.	 if	 the	 master	 needs	 to	 control 	 multiple	slave	devices	from	a	single	 master,	the	master	can	use	i/o	pin	to	select	the	slave	devices. ?	 spi	interface	operation the	 spi	 interface	 is	 a	 full	 duplex	 synchronous	 serial	 data	 link.	 it	 is	 a	 four	 line	 interface	 with	 pin	 names 	 sdi, 	 sdo, 	 sck 	 and	 scs .	 pins 	 sdi 	 and	 sdo 	 are	 the	 serial 	 data 	 input	 and	 serial 	 data 	 output	 lines,	 sck	 is	 the	 serial	 clock	 line	 and	 scs 	 is	 the	 slave	 select	 line.	 as	 the	 spi	 interface	 pins	 are	 pin-shared	 with	 normal	 i/o	 pins	 and	 with	 the	 i 2 c	 function	 pins,	 the	 spi	 interface	 must	 frst	be	enabled	by	selecting	the	sim	enable	confguration	option	and	setting	the	correct	bits	in	the 	 simc0	 and	 simc2	 registers.	 after	 the	 spi	 confguration	 option	 has	 been	 confgured	 it	 can	 also	 be	 additionally 	 disabled	 or	 enabled	 using	 the	 simen	 bit	 in	 the	 simc0	 register. 	 communication	 between	 devices	 connected	 to	 the	 spi	 interface	 is	 carried	 out	 in	 a	 slave/master	 mode	 with	 all	 data	 transfer	 initiations 	 being	 implemented 	 by	 the	 master. 	 the	 master	 also	 controls	 the	 clock	 signal.	 as	 the	 device	 only	 contains	 a	 single	 scs 	 pin	 only	 one	 slave	 device	 can	 be	 utilized.	 the	 scs 	 pin	 is	 controlled	 by	 software,	 set	 csen	 bit	 to	 "1"	 to	 enable	 scs 	 pin	 function,	 set	 csen	 bit	 to	 "0"	 the	 scs 	pin	will	 be	foating	state. spi master/slave connection

 rev. 1.10 86 ?a? 0?? ?01? rev. 1.10 87 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	
	
 � ?
 ? ? ?
 	 	 ? ? 	 ? ? ? ?? - 	 ? 	 ? ? ? ? ? ?
	 ? ?? ? ? ? ? spi block diagram the	spi	function	in	this	device	 offers	the	following	features: ?	 full	duplex	synchronous	data	transferboth	master	and	slave	modes ?	 lsb	frst	or	msb	frst	data	transmission	modes ?	 transmission 	complete	fag ?	 rising	or	falling	active	clock	edge ?	 wcol 	and	csen	bit	enabled	or	disable	select the	 status	 of	 the	 spi	 interface	 pins	 is	 determined	 by	 a	 number	 of	 factors 	 such	 as	 whether	 the	 device	 is	 in	 the	 master	 or	 slave	 mode	 and	 upon	 the	 condition	 of	 certain	 control	 bits	 such	 as	 csen	 and 	 simen. there	 are	 several 	 configuration	 options	 associated 	 with 	 the	 spi 	 interface.	 one 	 of	 these	 is 	 to 	 enable	 the	 sim	 function	 which	 selects	 the	 sim	 pins	 rather	 than	 normal	 i/o	 pins.	 note	 that	 if	 the 	 confguration	 option	 does	 not	 select 	 the	 sim	 function	 then	 the	 simen	 bit	 in	 the	 simc0	 register	 will	 have	 no	 effect. 	 another	 two	 spi	 confguration	 options	 determine	 if	 the	 csen	 and	 wcol 	 bits	 are	 to	 be	used.

 rev. 1.10 86 ?a? 0?? ?01? rev. 1.10 87 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu spi registers there	 are	 three	 internal	 registers	 which	 control	 the	 overall	 operation	 of	 the	 spi	 interface.	 these	 are	 the	 simd	 data	 register	 and	 two	 registers	 simc0	 and	 simc2.	 note	 that	 the	 simc1	 register	 is	 only	 used	by	the	i 2 c	interface. register name bit 7 6 5 4 3 2 1 0 si?c0 si?? si?1 si?0 pcken pckp1 pckp0 si?en si?d d7 d6 d5 d4 d3 d? d1 d0 si?c? d7 d6 ckpolb ckeg ?ls csen wcol trf sim registers list the	simd	register	is	used	to	store	the	data	being	transmitted	and	received.	 the	same	register	is	used	 by	 both	 the	 spi	 and	 i 2 c	 functions.	 before	 the	 device	 writes	 data	 to	 the	 spi	 bus,	 the	 actual	 data	 to	 be	 transmitted	 must	 be	 placed	 in	 the	 simd	 register. 	 after	 the	 data	 is	 received	 from	 the	 spi	 bus,	 the	 device	 can	 read	 it	 from	 the	 simd	 register. 	 any	 transmission	 or	 reception	 of	 data	 from	 the	 spi	 bus	 must	be	made	via	the	simd	 register. ?	 simd regisater bit 7 6 5 4 3 2 1 0 name d7 d6 d5 d4 d3 d? d1 d0 r/w r/w r/w r/w r/w r/w r/w r/w r/w por x x x x x x x x "x" unknown there	 are	 also	 two	 control	 registers	 for	 the	 spi	 interface,	 simc0	 and	 simc2.	 note	 that	 the	 simc2	 register	 also	 has	 the	 name	 sima 	 which	 is	 used	 by	 the	 i 2 c	 function.	 the	 simc1	 register	 is	 not	 used	 by	 the	 spi	 function, 	 only	 by	 the	 i 2 c	 function.	 register	 simc0	 is	 used	 to	 control	 the	 enable/disable	 function 	 and 	 to 	 set 	 the 	 data 	 transmission 	 clock 	 frequency. 	 although 	 not 	 connected 	 with 	 the 	 spi 	 function,	 the	 simc0	 register	 is	 also	 used	 to	 control	 the	 peripheral	 clock	 prescaler. 	 register	 simc2	 is	used	for	other	control	functions	such	as	lsb/msb	selection,	write	collision	fag	etc.

 rev. 1.10 88 ?a? 0?? ?01? rev. 1.10 89 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? simc0 register bit 7 6 5 4 3 2 1 0 name si?? si?1 si?0 pcken pckp1 pckp0 si?en r/w r/w r/w r/w r/w r/w r/w r/w por 1 1 1 0 0 0 0 %lwa sim2, sim1, sim0 6,02shudwl0rghrwuro 63,pdvwhuprgh63,forfnlvi ss 63,pdvwhuprgh63,forfnlvi ss 63,pdvwhuprgh63,forfnlvi ss 63,pdvwhuprgh63,forfnlvi /7 63,pdvwhuprgh63,forfnlv 7lphuhw rxwhurxwsxw3 63,vodhprgh , vodhprgh 8xvhgprgh 7khvhelwvvhwxswkhrhudoorshudwlprghriwkh6,0ixfwlr vzhoodvvhohfwl li wkh , ru 63, ixfwlr wkh duh xvhg wr frwuro wkh 63, 0dvwhu6odh vhohfwlr dg wkh 63, 0dvwhu forfn iuhtxhf 7kh 63, forfn lv d ixfwlr ri wkh vvwhp forfn exw fd dovr eh fkrvh wr eh vrxufhg iurp wkh 7lphuhw rxwhu ,i wkh 63, 6odh0rghlvvhohfwhgwkhwkhforfnzlooehvxssolhgedhwhudo0dvwhughlfh lw pcken 3hulskhudoorfn3lrwuro hvfulehg hovhzkhuh lw pckp1, pckp0 6hohfw3rxwsxwsliuhtxhf hvfulehghovhzkhuh lw simen 6,0rwuro lvdeoh deoh 7kh elw lv wkh rhudoo rrii frwuro iru wkh 6,0 lwhuidfh :kh wkh 6,01 elw lv fohduhg wr hur wr glvdeoh wkh 6,0 lwhuidfh wkh 6, 62 6 dg 66 ru 6 dg 6/ olhv zloo eh l d rdwl frglwlr dg wkh 6,0 rshudwl fxuuhw zloo eh uhgxfhg wr d pllpxp doxh :kh wkh elw lv klk wkh 6,0 lwhuidfh lv hdeohg 7kh 6,0 frilxudwlr rswlr pxvw kdh iluvw hdeohg wkh 6,0 lwhuidfh iru wklv elw wr eh hiihfwlh ,i wkh 6,0 lv frxuhg wr rshudwh dv d 63, lwhuidfh ld wkh 6,06,0elwvwkhfrwhwvriwkh63,frwurouhlvwhuvzloouhpdldwwkhsuhlrxv vhwwlv zkh wkh 6,01 elw fkdhv iurp orz wr klk dg vkrxog wkhuhiruh eh uvw llwldolvhg e wkh dssolfdwlr surudp ,i wkh 6,0 lv frxuhg wr rshudwh dv d , lwhuidfh ld wkh 6,06,0 elwv dg wkh 6,01 elw fkdhv iurp orz wr klk wkh frwhwv ri wkh , frwuro elwv vxfk dv 7 dg 7 zloo uhpdl dw wkh suhlrxv vhwwlv dg vkrxog wkhuhiruh eh uvw llwldolvhg e wkh dssolfdwlr surudp zkloh wkh uhohdw , dv vxfk dv 6 65: dg 5 zloo eh vhw wr wkhlu ghidxowvwdwhv lw xlpsohphwhguhdgdv

 rev. 1.10 88 ?a? 0?? ?01? rev. 1.10 89 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? simc2 register bit 7 6 5 4 3 2 1 0 name d7 d6 ckpolb ckeg ?ls csen wcol trf r/w r/w r/w r/w r/w r/w r/w r/w r/w por 0 0 0 0 0 0 0 0 %lw a 8qghqhgelw 7khvh elwfdqehuhdgruzulwwhqexvhuvriwzduhsurjudp %lw ckpolb hwhuplhvwkhedvhfrglwlrriwkhforfn olh wkh6olhzlooehklkzkhwkhforfnlvldfwlh wkh6olhzlooehorzzkhwkhforfnlvldfwlh 7kh 32/ elw ghwhuplhv wkh edvh frglwlr ri wkh forfn olh li wkh elw lv klk wkh wkh 6 olh zloo eh orz zkh wkh forfn lv ldfwlh :kh wkh 32/ elw lv orz wkhwkh6olhzlooehklkzkhwkhforfnlvldfwlh lw ckeg hwhuplhv63,6dfwlhforfnhghwsh 32/ 6lvklkedvhohhodggdwdfdswxuhdw6ulvlhgh 6lvklkedvhohhodggdwdfdswxuhdw6idoolhgh 32/ 6lvorzedvhohhodggdwdfdswxuhdw6idoolhgh 6lvorzedvhohhodggdwdfdswxuhdw6ulvlhgh 7kh dg 32/ elwv duh xvhg wr vhwxs wkh zd wkdw wkh forfn vldo rxwsxwv dg lsxwv gdwd r wkh 63, exv 7khvh wzr elwv pxvw eh frxuhg ehiruh gdwd wudvihu lv hhfxwhg rwkhuzlvh d huurhrxv forfn hgh pd eh hhudwhg 7kh 32/ elw ghwhuplhv wkh edvh frglwlr ri wkh forfn olh li wkh elw lv klk wkh wkh 6 olh zloo eh orz zkh wkh forfn lv ldfwlh :kh wkh 32/ elw lv orz wkh wkh 6 olh zloo eh klk zkh wkh forfn lv ldfwlh 7kh elw ghwhuplhv dfwlh forfn hgh wsh zklfk ghshgv xsr wkh frglwlr ri32/elw lw mls 63,dwdvkliwrughu /6 06 7klv lv wkh gdwd vkliw vhohfw elw dg lv xvhg wr vhohfw krz wkh gdwd lv wudvihuuhg hlwkhu 06ru/6uvw6hwwlwkhelwklkzloovhohfw06uvwdgorziru/6uvw lw csen 63, 66 slrwuro lvdeoh deoh 7kh 61 elw lv xvhg dv d hdeohglvdeoh iru wkh 66 sl ,i wklv elw lv orz wkh wkh 66 sl zloo eh glvdeohg dg sodfhg lwr d iordwl frglwlr ,i wkh elw lv klk wkh 66 sl zloo eh hdeohg dg xvhg dv d vhohfw sl 1rwhwkdwxvlwkh61elwfdehglvdeohgruhdeohgldfrxudwlrrswlr lw wcol 63, :ulwh roolvlrd 1rfroolvlr roolvlr 7kh :2/ d lv xvhg wr ghwhfw li d gdwd froolvlr kdv rffxuuhg ,i wklv elw lv klk lw phdv wkdw gdwd kdv ehh dwwhpswhg wr eh zulwwh wr wkh 6,0 uhlvwhu gxul d gdwd wudvihu rshudwlr 7klv zulwl rshudwlr zloo eh lruhg li gdwd lv ehl wudvihuuhg 7khelwfdehfohduhgewkhdssolfdwlrsurudp1rwhwkdwxvlwkh :2/ elwfd ehglvdeohgruhdeohgldfrxudwlrrswlr

 rev. 1.10 90 ?a? 0?? ?01? rev. 1.10 91 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu bit	0	 trf :	spi	 transmit/receive 	complete	fag 	 		0:	data	is	being	transferred 	 		1:	spi	data	transmission	is	completed 	 the 	 trf 	 bit 	 is 	 the 	 transmit/receive 	 complete 	 flag 	 and 	 is 	 set 	 "1"	 automatically 	 when	 an	 spi	 data	 transmission	 is	 completed,	 but	 must	 set	 to	 "0"	 by	 the	 application	 program.	it	can	be	used	to	generate	an	interrupt. spi communication after 	 the 	 spi	 interface 	 is 	 enabled 	 by	 setting 	 the 	 simen 	 bit 	 high, 	 then 	 in 	 the 	 master 	 mode, 	 when 	 data	 is	 written	 to	 the	 simd	 register, 	 transmission/reception	 will	 begin	 simultaneously. 	 when	 the 	 data 	 transfer 	 is 	 complete, 	 the 	 trf 	 flag 	 will 	 be 	 set 	 automatically, 	 but 	 must 	 be 	 cleared 	 using 	 the 	 application	 program.	 in	 the	 slave	 mode,	 when	 the	 clock	 signal	 from	 the	 master	 has	 been	 received,	 any	 data	 in	 the	 simd	 register	 will	 be	 transmitted	 and	 any	 data	 on	 the	 sdi	 pin	 will	 be	 shifted	 into	 the	 simd	 register. 	 the	 master	 should	 output	 an	 scs 	 signal	 to	 enable	 the	 slave	 device	 before	 a 	 clock	 signal	 is	 provided.	 the	 slave	 data	 to	 be	 transferred	 should	 be	 well	 prepared	 at	 the	 appropriate	 moment	relative	to	the	 scs 	signal	depending	upon	the	confgurations	of	the	ckpolb	bit	and	ckeg	 bit.	 the	 accompanying	 timing	 diagram	 shows	 the	 relationship	 between	 the	 slave	 data	 and	 scs 	 signal	 for	various	confgurations	of	the	ckpolb	and	ckeg	bits. the	spi	will	continue	to	function	even	in	the	idle	mode.

	 � ? ? ? ? ? 	
 ?? ?? ? ?? ? ?? ?? -? ?? ?? ?? ?? ?? -? ?? ? ?? ?? ? ?? ?? ?? ? ?? ? ?? ?? -? ?? ?? ?? ?? ?? -? ?? ? ?? ?? ? ?? ?	
 ? ? spi master mode timing

 	 	 	 	 	 	 	 	
 � ? ? ? ? ???
? - ? ? ?? spi slave mode timing - ckeg=0

 rev. 1.10 90 ?a? 0?? ?01? rev. 1.10 91 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	 	 	 	 	 	 	 	
 � ? ???? ? ? ? ? ? ?? ??
 ? - ? ?? ?? ? ? ?? ? ? ? ? ?? ? � ?? ?? ?? ? ? ?? ?? ??? ? ?? ? ? ? ? ? ? ?? spi slave mode timing - ckeg=1

 	
 � ? 	 ?
 � ? � ? 	
 ?
 ? ? ? ? ? ? - ? ??
 ? ? ?? ? ? ?? ?? ? ?? ? ??? ??? ? ?? ? ?? ?? ? spi transfer control flowchart

 rev. 1.10 9? ?a? 0?? ?01? rev. 1.10 93 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu i 2 c interface the	 i 2 c	 interface	 is	 used	 to	 communicate	 with	 external	 peripheral	 devices	 such	 as	 sensors, 	 eeprom 	 memory 	 etc. 	 originally 	 developed 	 by 	 philips, 	 it 	 is 	 a 	 two 	 line 	 low 	 speed 	 serial 	 interface 	 for	 synchronous	 serial	 data	 transfer. 	 the	 advantage	 of	 only	 two	 lines	 for	 communication,	 relatively	 simple	 communication	 protocol	 and	 the	 ability	 to	 accommodate	 multiple	 devices	 on	 the	 same	 bus 	 has	made	it	an	extremely	popular	interface	type	for	many	applications. i 2 c mater slave bus connection ?	 i 2 c	interface	operation the 	 i 2 c 	 serial 	 interface 	 is 	 a 	 two 	 line 	 interface, 	 a 	 serial 	 data 	 line, 	 sda,	 and 	 serial 	 clock 	 line, 	 scl.	 as	 many	 devices	 may	 be	 connected	 together	 on	 the	 same	 bus,	 their	 outputs	 are	 both	 open	 drain	 types.	 for	 this	 reason	 it	 is	 necessary	 that	 external	 pull-high	 resistors	 are	 connected	 to 	 these	 outputs.	 note	 that	 no	 chip	 select	 line	 exists,	 as	 each	 device	 on	 the	 i 2 c	 bus	 is	 identifed	 by	 a	 unique	address	which	will	be	transmitted	and	received	on	the	i 2 c	bus. when 	 two 	 devices 	 communicate 	 with 	 each 	 other 	 on 	 the 	 bidirectional 	 i 2 c 	 bus, 	 one 	 is 	 known 	 as 	 the 	 master 	 device 	 and 	 one	 as 	 the 	 slave 	 device. 	 both 	 master 	 and 	 slave 	 can 	 transmit 	 and 	 receive 	 data,	 however, 	 it	 is	 the	 master	 device 	 that	 has	 overall	 control	 of	 the	 bus.	 for	 these	 devices,	 which	 only	 operates	 in	 slave	 mode,	 there	 are	 two	 methods	 of	 transferring	 data 	 on	 the	 i 2 c	 bus,	 the	 slave	 transmit	mode	and	the	slave	receive	mode.

 	
 � ? ? ? ? ?
 ?- ? ?� � ?� ? ? ? ? ?? ? ?
 ? ? ? ? ? ? ? ? 	 ?�

 rev. 1.10 9? ?a? 0?? ?01? rev. 1.10 93 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu there	 are	 several	 configuration	 options	 associated	 with	 the	 i 2 c	 interface.	 one	 of	 these	 is	 to 	 enable	 the	 function	 which	 selects	 the	 sim	 pins	 rather	 than	 normal	 i/o	 pins.	 note	 that	 if	 the 	 confguration	 option	 does	 not	 select 	 the	 sim	 function	 then	 the	 simen	 bit	 in	 the	 simc0	 register	 will 	 have 	 no 	 effect. 	 a 	 confguration 	 option 	 exists 	 to 	 allow 	 a 	 clock 	 other 	 than 	 the 	 system 	 clock 	 to	 drive	 the	 i 2 c	 interface.	 another	 confguration	 option	 determines	 the	 debounce	 time	 of	 the	 i 2 c	 interface.	 this	 uses 	 the	 internal	 clock	 to	 in	 effect 	 add	 a	 debounce	 time	 to	 the	 external	 clock	 to 	 reduce 	 the 	 possibility 	 of 	 glitches 	 on 	 the 	 clock 	 line 	 causing 	 erroneous 	 operation. 	 the 	 debounce 	 time,	if	selected,	can	be	chosen	to	be	either	2	or	4	system	clocks. i 2 c debounce time select i on i 2 c standard mode (100khz) i 2 c fast mode (400khz) no debounce f sys > ??h z f sys > 5?hz ? s?stem clock debounce f sys > 4?hz f sys > 10 ?hz 4 s?stem clock debounce f sys > 8?hz f sys > ? 0 ?hz i 2 c minimum f sys frequency send slave address and r/w bit from ?aster start signal from ?aster acknowledge from slave send data b?te from ?aster acknowledge from slave stop signal from ?aster i 2 c registers there	 are	 three	 control	 registers	 associated	 with	 the	 i 2 c	 bus,	 simc0,	 simc1	 and	 sima 	 and	 one 	 data	 register, 	 simd.	 the	 simd	 register, 	 which	 is	 shown	 in	 the	 above	 spi	 section,	 is	 used	 to	 store	 the	 data	 being	 transmitted	 and	 received	 on	 the	 i 2 c	 bus.	 before	 the	 microcontroller	 writes	 data	 to 	 the	 i 2 c	 bus,	 the	 actual	 data	 to	 be	 transmitted	 must	 be	 placed	 in	 the	 simd	 register. 	 after	 the	 data	 is	 received	 from	 the	 i 2 c	 bus,	 the	 microcontroller 	 can	 read	 it	 from	 the	 simd	 register. 	 any	 transmission	 or	reception	of	data	from	the	i 2 c	bus	must	be	made	via	the	simd	 register. note	 that	 the	 sima 	 register	 also	 has	 the	 name	 simc2	 which	 is	 used	 by	 the	 spi	 function.	 bit	 simen	 and	bits	sim2~sim0	in	register	simc0	are	used	by	the	i 2 c	interface. register name bit 7 6 5 4 3 2 1 0 si?c0 si?? si?1 si?0 pcken pckp1 pckp0 si?en si?c1 hcf haas hbb htx txak srw ia?wu rxak si?d d7 d6 d5 d4 d3 d? d1 d0 si?a iica6 iica5 iica4 iica3 iica? iica1 iica0 d0 i 2 c registers list

 rev. 1.10 94 ?a? 0?? ?01? rev. 1.10 95 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? simc0 register bit 7 6 5 4 3 2 1 0 name si?? si?1 si?0 pcken pckp1 pckp0 si?en r/w r/w r/w r/w r/w r/w r/w r/w por 1 1 1 0 0 0 0 %lwa sim2, sim1, sim0 6,02shudwl0rghrwuro 63,pdvwhuprgh63,forfnlvi ss 63,pdvwhuprgh63,forfnlvi ss 63,pdvwhuprgh63,forfnlvi ss 63,pdvwhuprgh63,forfnlvi /7 63,pdvwhuprgh63,forfnlv 7lphuhw rxwhurxwsxw3 63,vodhprgh , vodhprgh 8xvhgprgh 7khvh elwv vhwxs wkh rhudoo rshudwl prgh ri wkh 6,0 ixfwlr v zhoo dv vhohfwl li wkh , ru 63, ixfwlr wkh duh xvhg wr frwuro wkh 63, 0dvwhu6odh vhohfwlr dg wkh 63, 0dvwhu forfn iuhtxhf 7kh 63, forfn lv d ixfwlr ri wkh vvwhp forfn exw fd dovr eh fkrvh wr eh vrxufhg iurp 7lphuhw rxwhu ,i wkh 63, 6odh 0rghlvvhohfwhgwkhwkhforfnzlooehvxssolhgedhwhudo0dvwhughlfh lw pcken 3hulskhudoorfn3lfrwuro hvfulehghovhzkhuh lw pckp1, pckp0 6hohfw3rxwsxwsliuhtxhf hvfulehghovhzkhuh lw simen 6,0rwuro lvdeoh deoh 7khelwlvwkhrhudoo rriifrwuroiruwkh6,0 lwhuidfh :khwkh6,01elwlv fohduhgwrhurwrglvdeohwkh6,0lwhuidfhwkh6,626dg 66 ru6 dg6/ olhvzlooehldrdwlfrglwlrdgwkh6,0rshudwlfxuuhwzlooeh uhgxfhgwrdpllpxpdoxh :khwkhelwlvklkwkh6,0lwhuidfhlvhdeohg 7kh 6,0frxudwlrrswlrpxvwkdhuvwhdeohgwkh6,0lwhuidfhiruwklvelwwr eh hiihfwlh,iwkh6,0lvfrxuhgwrrshudwhdvd63,lwhuidfhld6,06,0 elwvwkhfrwhwvriwkh63,frwurouhlvwhuvzloouhpdldwwkhsuhlrxvvhwwlv zkhwkh6,01elwfkdhviurporzwrklkdgvkrxogwkhuhiruhehuvw llwldolvhgewkhdssolfdwlrsurudp,iwkh6,0lvfrxuhgwrrshudwhdvd, lwhuidfhldwkh6,06,0elwvdgwkh6,01elwfkdhviurporzwrklkwkh frwhwvriwkh, frwuroelwvvxfkdv7dg 7zloouhpdldw wkhsuhlrxv vhwwlvdgvkrxogwkhuhiruhehuvwllwldolvhgewkhdssolfdwlrsurudpzklohwkh uhohdw, dvvxfkdv 6 65: dg5zlooehvhwwrwkhlu ghidxowvwdwhv lw xlpsohphwhguhdgdv

 rev. 1.10 94 ?a? 0?? ?01? rev. 1.10 95 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? simc1 register bit 7 6 5 4 3 2 1 0 name hcf haas hbb htx txak srw ia?wu rxak r/w r r r r/w r/w r r/w r por 1 0 0 0 0 0 0 1 %lw hcf , xvgdwdwudvihufrpsohwlrd dwdlvehlwudvihuuhg rpsohwlrridelwgdwdwudvihu 7khdlvwkhgdwdwudvihud 7klvdzlooeh hurzkhgdwdlvehl wudvihuuhg8srfrpsohwlrridelwgdwdwudvihuwkhdzloorklkdgd lwhuuxswzlooehhhudwhg lw haas , xvdgguhvvpdwfkd 1rwdgguhvvpdwfk gguhvvpdwfk 7kh6dlvwkhdgguhvvpdwfkd 7klvdlvxvhgwrghwhuplhliwkhvodh ghlfhdgguhvvlvwkhvdphdvwkhpdvwhuwudvplwdgguhvv,iwkhdgguhvvhvpdwfk wkhwklvelwzlooehklkliwkhuhlvrpdwfkwkhwkhdzlooeh orz lw hbb , xvexvd , xvlvrwexv , xvlvexv 7khdlvwkh, exvd 7klvdzlooehzkhwkh, exvlvexv zklfkzloorffxuzkhd 6757 vldolvghwhfwhg 7khdzlooehvhwwrzkh wkhexvlviuhhzklfkzloorffxuzkhd 6723 vldolvghwhfwhg lw htx 6hohfw, vodhghlfhlvwudvplwwhuruuhfhlhu 6odhghlfhlvwkhuhfhlhu 6odhghlfhlvwkhwudvplwwhu lw txak , xvwudvplwdfnrzohghd 6odhvhgdfnrzohghd 6odhgrrwvhgdfnrzohghd 7kh 7 elw lv wkh wudvplw dfnrzohgh d iwhu wkh vodh ghlfh uhfhlsw ri elwv ri gdwd wklv elw zloo eh wudvplwwhg wr wkh exv r wkh wk forfn iurp wkh vodh ghlfh 7kh vodh ghlfh pxvw dozdv vhw 7 elw wr ehiruh ixuwkhu gdwd lv uhfhlhg lw srw , 6odh 5hdg:ulwhd 6odhghlfhvkrxogehluhfhlhprgh 6odhghlfhvkrxogehlwudvplwprgh 7kh 65: iod lv wkh , 6odh 5hdg:ulwh iod 7klv iod ghwhuplhv zkhwkhu wkh pdvwhu ghlfh zlvkhv wr wudvplw ru uhfhlh gdwd iurp wkh , exv :kh wkh wudvplwwhg dgguhvv dg vodh dgguhvv lv pdwfk wkdw lv zkh wkh 6 d lv vhw klk wkh vodh ghlfh zloo fkhfn wkh 65: d wr ghwhuplh zkhwkhu lw vkrxog eh l wudvplw prgh ru uhfhlh prgh ,i wkh 65: d lv klk wkh pdvwhu lv uhtxhvwl wr uhdg gdwd iurp wkh exv vr wkh vodh ghlfh vkrxog eh l wudvplw prgh :kh wkh 65: d lv hur wkh pdvwhu zloo zulwh gdwd wr wkh exv wkhuhiruh wkh vodh ghlfh vkrxogehluhfhlhprghwruhdgwklvgdwd

 rev. 1.10 96 ?a? 0?? ?01? rev. 1.10 97 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu bit	1	 iamwu :	i 2 c	 address	match	 wake-up 	control 	 		0:	disable 	 		1:	enable	C	must	be	cleared	byu	the	application	program	after	wake-up 	 the	 i 2 c	 module	 can	 run	 without	 using	 the	 internal	 clock,	 and	 generate	 an	 interrupt	 if	 the	 sim	 interrupt	 is	 enabled,	 which	 can	 be	 used	 in	 the	 sleep	 mode,	 idle	 mode, 	 normal	 mode.	 if	 the	 iamwu	 bit	 has	 been	 set	 before	 entering	 either	 the	 sleep 	 or 	 idle	 mode	 to	 enable	 the	 i 2 c	 address	 match	 wake	 up,	 then	 this	 bit	 must	 be	 cleared	 by	the	application	program	after	wake-up	to	ensure	correction	device	operation. 	 note:	 if	 rnic=1	 and	 mcu	 is	 powered	 down,	 the	 slave-receiver	 can	 remain 	 operational	but	the	slave-transmitter	will	not	operate	as	it	needs	the	system	clock. bit	0	 rxak :	i 2 c	bus	receive	acknowledge	fag 	 		0:	slave	receive	acknowledge	fag 	 		1:	slave	do	not	receive	acknowledge	fag 	 the	 rxak	 fag	 is	 the	 receiver	 acknowledge	 fag.	 when	 the	 rxak	 fag	 is	 "0",	 it 	 means	 that	 a	 acknowledge	 signal	 has	 been	 received	 at	 the	 9th	 clock,	 after	 8	 bits	 of	 data	 have	 been	 transmitted.	 when	 the	 slave 	 device	 in	 the	 transmit	 mode,	 the	 slave 	 device	 checks	 the	 rxak	 fag	 to	 determine	 if	 the	 master	 receiver	 wishes	 to	 receive	 the	 next	 byte.	 the	 slave	 transmitter	 will	 therefore	 continue	 sending	 out	 data	 until	 the	 rxak	 fag	 is	 "1".	 when	 this	 occurs,	 the	 slave	 transmitter	 will	 release	 the	 sda 	 line	 to	allow	the	master	to	send	a	 stop 	signal	to	release	the	i 2 c	bus. the	simd	register	is	used	to	store	the	data	being	transmitted	and	received.	 the	same	register	is	used	 by	 both	 the	 spi	 and	 i 2 c	 functions.	 before	 the	 device	 writes	 data	 to	 the	 spi	 bus,	 the	 actual	 data	 to	 be	 transmitted	 must	 be	 placed	 in	 the	 simd	 register. 	 after	 the	 data	 is	 received	 from	 the	 spi	 bus,	 the	 device	 can	 read	 it	 from	 the	 simd	 register. 	 any	 transmission	 or	 reception	 of	 data	 from	 the	 spi	 bus	 must	be	made	via	the	simd	 register.

 rev. 1.10 96 ?a? 0?? ?01? rev. 1.10 97 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? simd register bit 7 6 5 4 3 2 1 0 name d7 d6 d5 d4 d3 d? d1 d0 r/w r/w r/w r/w r/w r/w r/w r/w r/w por x x x x x x x x " x " unknown ? sima register bit 7 6 5 4 3 2 1 0 name iica6 iica5 iica4 iica3 iica? iica1 iica0 d0 r/w r/w r/w r/w r/w r/w r/w r/w r/w por x x x x x x x x " x " unknown %lwa iica6~ iica0 , vodhdgguhvv ,,,,lvwkh, vodhdgguhvvelwelw 7kh 6,0 uhlvwhu lv dovr xvhg e wkh 63, lwhuidfh exw kdv wkh dph 6,0 7kh 6,0 uhlvwhu lv wkh orfdwlr zkhuh wkh elw vodh dgguhvv ri wkh vodh ghlfh lv vwruhg lwv ri wkh 6,0 uhlvwhu ghh wkh ghlfh vodh dgguhvv lw lv rw ghhg :kh d pdvwhu ghlfh zklfk lv frhfwhg wr wkh , exv vhgv rxw d dgguhvv zklfk pdwfkhv wkh vodh dgguhvv l wkh 6,0 uhlvwhu wkh vodh ghlfh zloo eh vhohfwhg 1rwh wkdw wkh 6,0 uhlvwhu lv wkh vdph uhlvwhu dgguhvv dv 6,0 zklfk lv xvhgewkh63,lwhuidfh lw 8ghhgelw 7klvelwfdehuhdgruzulwwhexvhuvriwzduhsurudp i 2 c bus communication &rppxqlfdwlrq rq wkh , & exv uhtxluhv irxu vhsdudwh vwhsv d 6757 vljqdo d vodyh ghylfh dgguhvv wudqvplvvlrq d gdwd wudqvplvvlrq dqg ilqdoo d 6723 vljqdo :khq d 6757 vljqdo lv sodfhg rq wkh , & exv doo ghylfhv rq wkh exv zloo uhfhlyh wklv vljqdo dqg eh qrwlhg ri wkh lpplqhqw duulydo ri gdwd rq wkh exv 7kh uvw vhyhq elwv ri wkh gdwd zloo eh wkh vodyh dgguhvv zlwk wkh uvw elw ehlqj wkh 06 ,i wkh dgguhvv ri wkh vodyh ghylfh pdwfkhv wkdw ri wkh wudqvplwwhg dgguhvv wkh +6 elw lq wkh 6,0& uhjlvwhu zloo eh vhw dqg dq , & lqwhuuxsw zloo eh jhqhudwhg iwhu hqwhulqj wkh lqwhuuxsw vhuylfh urxwlqh wkh vodyh ghylfh pxvw uvw fkhfn wkh frqglwlrq ri wkh +6 elw wr ghwhuplqh zkhwkhu wkh lqwhuuxsw vrxufh ruljlqdwhv iurp dq dgguhvv pdwfk ru iurp wkh frpsohwlrq ri dq elw gdwd wudqvihu xulqj d gdwd wudqvihu qrwh wkdw diwhu wkh elw vodyh dgguhvv kdv ehhq wudqvplwwhg wkh iroorzlqj elw zklfk lv wkh wk elw lv wkh uhdgzulwh elw zkrvh ydoxh zloo eh sodfhg lq wkh 65: elw 7klv elw zloo eh fkhfnhg e wkh vodyh ghylfh wr ghwhuplqh zkhwkhu wr jr lqwr wudqvplw ru uhfhlyh prgh hiruh dq wudqvihu ri gdwd wr ru iurp wkh , & exv wkh plfurfrqwuroohu pxvw lqlwldolvh wkh exv wkh iroorzlqj duh vwhsvwrdfklhyhwklv 6whs 6hwwkh6,0a6,0dqg6,0(1elwvlqwkh6,0&uhjlvwhuwrwrhqdeohwkh, &exv 6whs :ulwh wkhvodyhdgguhvvriwkhghylfhwrwkh, &exvdgguhvvuhjlvwhu6,0 6whs 6hw wkh 6,0(dqg 6,0 0xwl)xqfwlrq lqwhuuxsw hqdeoh elw ri wkh lqwhuuxsw frqwuro uhjlvwhu wr hqdeohwkh6,0lqwhuuxswdqg0xowlixqfwlrqlqwhuuxsw

 rev. 1.10 98 ?a? 0?? ?01? rev. 1.10 99 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

	
 � ? ? ? ? ? ? - ? ? ? ? ? ?? ? ? ? ? ? - i 2 c bus initialisation flow chart i 2 c bus start signal the	 start 	 signal	 can	 only	 be	 generated	 by	 the	 master	 device	 connected 	 to	 the	 i 2 c	 bus	 and	 not	 by	 the	 slave	 device.	 this	 start 	 signal	 will	 be	 detected	 by	 all	 devices	 connected	 to	 the	 i 2 c	 bus.	 when	 detected,	 this	 indicates	 that	 the	 i 2 c	 bus	 is	 busy	 and	 therefore	 the	 hbb	 bit	 will	 be	 set.	 a 	 start 	 condition	 occurs	 when	 a	 high	 to	 low	 transition	 on	 the	 sda 	 line	 takes	 place	 when	 the	 scl 	 line 	 remains	high. slave address the 	 transmission 	 of 	 a 	 start 	 signal 	 by 	 the 	 master 	 will 	 be 	 detected 	 by 	 all 	 devices 	 on 	 the 	 i 2 c 	 bus. 	 to 	 determine	 which	 slave	 device	 the	 master	 wishes	 to	 communicate	 with,	 the	 address	 of	 the	 slave	 device	 will	 be	 sent	 out	 immediately 	 following	 the	 start 	 signal.	 all	 slave	 devices,	 after	 receiving	 this	 7-bit	 address	 data,	 will	 compare	 it	 with	 their	 own	 7-bit	 slave	 address.	 if	 the	 address	 sent	 out	 by	 the	 master 	 matches 	 the	 internal	 address	 of	 the	 microcontroller	 slave	 device,	 then	 an	 internal	 i 2 c	 bus	 interrupt 	 signal	 will 	 be	 generated. 	 the	 next	 bit	 following 	 the	 address,	 which	 is	 the	 8th	 bit,	 defnes 	 the	 read/write	 status	 and	 will	 be	 saved	 to	 the	 srw 	 bit	 of	 the	 simc1	 register. 	 the	 slave	 device	 will	 then	 transmit	 an	 acknowledge	 bit,	 which	 is	 a	 low	 level,	 as	 the	 9th	 bit.	 the	 slave	 device	 will	 also	 set	 the	status	fag	haas	when	the	addresses	match. as	 an	 i 2 c	 bus	 interrupt	 can	 come	 from	 two	 sources,	 when	 the	 program	 enters	 the	 interrupt 	 subroutine, 	 the 	 haas	 bit 	 should 	 be 	 examined 	 to 	 see 	 whether 	 the 	 interrupt 	 source 	 has 	 come 	 from 	 a	 matching	 slave	 address	 or	 from	 the	 completion	 of	 a	 data	 byte	 transfer. 	 when	 a	 slave	 address	 is 	 matched,	 the	 device	 must	 be	 placed	 in	 either	 the	 transmit	 mode	 and	 then	 write 	 data	 to	 the	 simd 	 register, 	 or	 in	 the	 receive	 mode	 where	 it	 must	 implement	 a	 dummy	 read	 from	 the	 simd	 register	 to	 release	the	scl 	line.

 rev. 1.10 98 ?a? 0?? ?01? rev. 1.10 99 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu i 2 c bus read/write signal the	 srw 	 bit	 in	 the	 simc1	 register 	 defnes	 whether	 the	 slave	 device	 wishes	 to	 read	 data	 from	 the	 i 2 c	 bus	 or	 write	 data	 to	 the	 i 2 c	 bus.	 the	 slave	 device	 should	 examine	 this	 bit	 to	 determine	 if	 it	 is	 to	 be	 a	 transmitter	 or	 a	 receiver. 	 if	 the	 srw 	 fag	 is	 "1"	 then	 this	 indicates	 that	 the	 master	 device	 wishes	 to	 read	 data	 from	 the	 i 2 c	 bus,	 therefore	 the	 slave	 device	 must	 be	 setup	 to	 send	 data	 to	 the	 i 2 c	 bus	 as	 a	 transmitter. 	 if	 the	 srw 	 fag	 is	 "0"	 then	 this	 indicates	 that	 the	 master	 wishes	 to	 send	 data	 to	 the	 i 2 c	 bus,	therefore	the	slave	device	must	be	setup	to	read	data	from	the	i 2 c	bus	as	a	 receiver. i 2 c bus slave address acknowledge signal after 	 the	 master 	 has 	 transmitted 	 a	 calling	 address, 	 any	 slave 	 device	 on	 the	 i 2 c	 bus, 	 whose 	 own	 internal	 address	 matches	 the	 calling	 address,	 must	 generate	 an	 acknowledge	 signal.	 the 	 acknowledge	 signal	 will	 inform	 the	 master	 that	 a	 slave	 device	 has	 accepted	 its	 calling	 address.	 if	 no	 acknowledge	 signal	 is	 received	 by	 the	 master	 then	 a	 stop 	 signal	 must	 be	 transmitted	 by	 the	 master	 to	 end	 the	 communication.	 when	 the	 haas	 fag	 is	 high,	 the	 addresses	 have	 matched	 and	 the	 slave	 device	 must	 check	 the	 srw 	 fag	 to	 determine	 if	 it	 is	 to	 be	 a	 transmitter	 or	 a	 receiver. 	 if	 the	 srw 	 fag	 is	 high,	 the	 slave	 device	 should	 be	 setup	 to	 be	 a	 transmitter	 so	 the	 htx	 bit	 in	 the	 simc1	 register	 should	 be	 set	 to	 "1".	 if	 the	 srw 	 fag	 is	 low, 	 then	 the	 microcontroller	 slave	 device	 should	 be	 setup	 as	 a	receiver	and	the	htx	bit	in	the	simc1	register	should	be	set	to	"0". i 2 c bus data and acknowledge signal the	 transmitted	 data	 is	 8-bits	 wide	 and	 is	 transmitted	 after	 the	 slave	 device	 has	 acknowledged 	 receipt 	 of 	 its 	 slave 	 address. 	 the 	 order 	 of 	 serial 	 bit 	 transmission 	 is 	 the 	 msb 	 frst 	 and 	 the 	 lsb 	 last. 	 after	 receipt	 of	 8-bits	 of	 data,	 the	 receiver	 must	 transmit	 an	 acknowledge	 signal,	 level	 "0",	 before	 it	 can	 receive	 the	 next	 data	 byte.	 if	 the	 slave	 transmitter	 does	 not	 receive 	 an	 acknowledge	 bit	 signal	 from	 the	 master	 receiver, 	 then	 the	 slave	 transmitter	 will	 release	 the	 sda 	 line	 to	 allow	 the	 master 	 to	 send	 a	 stop 	 signal	 to	 release	 the	 i 2 c	 bus.	 the	 corresponding	 data	 will	 be	 stored	 in	 the	 simd 	 register. 	 if	 setup	 as	 a	 transmitter, 	 the	 slave	 device	 must	 frst	 write	 the	 data	 to	 be	 transmitted	 into	 the	 simd	 register. 	 if	 setup	 as	 a	 receiver, 	 the	 slave	 device	 must	 read	 the	 transmitted	 data	 from	 the	 simd	 register. when	 the	 slave	 receiver	 receives	 the	 data	 byte,	 it	 must	 generate	 an	 acknowledge	 bit,	 known	 as 	 txak,	 on	 the	 9th	 clock.	 the	 slave	 device,	 which	 is	 setup	 as	 a	 transmitter 	 will	 check	 the	 rxak	 bit	 in	 the	 simc1	 register	 to	 determine	 if	 it	 is	 to	 send	 another	 data	 byte,	 if	 not	 then	 it	 will	 release	 the 	 sda 	line	and	await	the	receipt	of	a	 stop 	signal	from	the	 master.

 rev. 1.10 100 ?a? 0?? ?01? rev. 1.10 101 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	

 � ? � ?
 ? ? ? ?� ? ? - ?
 � � - ?

 	 	 ? i 2 c communication timing diagram note:	*when	a	slave	address	is	matched,	the	device	must	be	placed	in	either	the	transmit	mode	and	 then	write	data	to	the	simd	 register,	or	in	the	receive	mode	where	it	must	implemented	a	 dummy	read	from	the	simd	register	to	release	the	scl 	line.

	
 � ? 		?

	
 � �
 �

 � ? 		?

	
 � i 2 c bus isr flow chart

 rev. 1.10 100 ?a? 0?? ?01? rev. 1.10 101 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu peripheral clock output the	 peripheral	 clock	 output	 allows	 the	 device	 to	 supply	 external	 hardware	 with	 a	 clock	 signal 	 synchronised	to	the	microcontroller	clock. peripheral clock operation as	 the	 peripheral	 clock	 output	 pin,	 pck,	 is	 shared	 with	 i/o	 line,	 the	 required	 pin	 function	 is	 chosen	 via	 pcken	 in	 the	 simc0	 register. 	 the	 peripheral	 clock	 function	 is	 controlled	 using	 the	 simc0 	 register. 	 the	 clock 	 source	 for	 the	 peripheral	 clock	 output	 can	 originate	 from	 either	 the	 timer/event 	 counter 	 0 	 output/2 	 or 	 a 	 divided 	 ratio 	 of 	 the 	 internal 	 fsys	 clock. 	 the 	 pcken 	 bit 	 in 	 the 	 simc0 	 register	 is	 the	 overall	 on/off 	 control, 	 setting	 pcken	 bit	 to	 "1"	 enables	 the	 peripheral	 clock,	 setting	 pcken	 bit	 to	 "0"	 disables	 it.	 the	 required	 division	 ratio	 of	 the	 system	 clock	 is	 selected	 using	 the	 pckp1	and	pckp0	bits	in	the	same	 register. ?	 simc0 register bit 7 6 5 4 3 2 1 0 name si?? si?1 si?0 pcken pckp1 pckp0 si?en r/w r/w r/w r/w r/w r/w r/w r/w por 1 1 1 0 0 0 0 bit	7~5	 sim2, sim1, sim0 :	sim	operating	mode	control 	 	 	 		described	elsewhere bit	 4	 	 pcken :	peripheral	clock	pin	control 	 	 		 		0:	disable 	 	 	 		1:	enable bit	3~2	 pckp1, pckp0 :	select	pck	output	pin	frequency 	 	 	 		00:	f 	 	 	 		01:	f /4 	 	 	 		10:	f /8 	 	 	 		 11:	 timer/event 	counter	0	output	/2	(pfd0) bit	 1	 	 simen :	sim	control 	 	 	 		described	elsewhere bit	 0	 	 unimplemented,	read	as	"0"

 rev. 1.10 10? ?a? 0?? ?01? rev. 1.10 103 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu serial interface C spia the	 devices 	 contain	 an	 independent	 spi 	 function.	 it	 is 	 important	 not	 to	 confuse	 this 	 independent 	 spi 	 function	 with 	 the	 additional	 one	 contained	 withing 	 in	 the	 combined	 sim 	 function,	 which 	 is 	 described 	 in	 another	 section 	 of	 this	 datasheet. 	 this	 independent	 spi 	 function	 will 	 carry	 the	 name 	 spia 	to	distinguish	it	from	the	other	one	in	the	sim. this	 spia 	 interface 	 is	 often	 used	 to	 communicate	 with	 external	 peripheral	 devices	 such	 as	 sensors,	 flash 	 or	 eeprom 	 memory 	 devices, 	 etc. 	 originally 	 developed 	 by	 motorola, 	 the 	 four	 line 	 spi 	 interface	 is	 a	 synchronous	 serial	 data	 interface	 that	 has	 a	 relatively	 simple	 communication	 protocol	 simplifying	the	programming	requirements	when	communicating	with	external	hardware	devices. the	 communication	 is	 full	 duplex	 and	 operates	 as	 a	 slave/master	 type,	 where	 the	 device	 can	 be 	 either	 master	 or	 slave.	 although	 the	 spia 	 interface	 specifcation	 can	 control	 multiple	 slave	 devices	 from 	 a 	 single 	 master, 	 this 	 device 	 is 	 provided 	 only 	 one 	 scsa 	 pin. 	 if 	 the 	 master 	 needs 	 to 	 control 	 multiple	slave	devices	from	a	single	 master,	the	master	can	use	i/o	pins	to	select	the	slave	devices. spia interface operation the	 spia 	 interface	 is	 a	 full	 duplex	 synchronous	 serial	 data	 link.	 it	 is	 a	 four	 line	 interface	 with 	 pin	 names	 sdia,	 sdoa,	 scka 	 and	 scsa .	 pins	 sdia 	 and	 sdoa 	 are	 the	 serial	 data	 input	 and 	 serial	 data	 output	 lines,	 scka 	 is	 the	 serial	 clock	 line	 and	 scsa 	 is	 the	 slave	 select	 line.	 as	 the 	 spia 	 interface	 pins	 are	 pin-shared	 with	 other	 functions,	 the	 spia 	 interface	 must	 frst	 be	 selected 	 by	 the	 correct	 bits	 in	 the	 spiac0	 and	 spiac1	 registers.	 after	 the	 spia 	 confguration	 option	 has 	 been	 selected,	 it	 can	 also	 be	 additionally	 disabled	 or	 enabled	 using	 the	 spiaen	 bit	 in	 the	 spiac0	 register. 	 communication	 between	 devices	 connected	 to	 the	 spi1	 interface 	 is	 carried	 out	 in	 a	 slave/ master 	 mode 	 with 	 all 	 data 	 transfer 	 initiations 	 being 	 implemented 	 by	 the 	 master. 	 the 	 master 	 also 	 controls	the	clock/signal.	 as	the	device	only	contains	a	single	 sasa 	pin	only	one	slave	device	can	be	 utilised.	 the	 scsa 	 pin	 is	 controlled	 by	 the	 application	 program,	 set	 the	 the	 sacsen	 bit	 to	 1	 to	 enable	 the	 scsa 	pin	function	and	clear	the	sacsen	bit	to	0	to	place	the	 scsa 	pin	into	a	foating	state.	 spia master/slave connection

 rev. 1.10 10? ?a? 0?? ?01? rev. 1.10 103 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu

 	
 	
 � ?
 ? ? ?
 	 	 ? ? 	 ? ? ? ? 	 - ? 	 ? ? ? - ? ?
 	 ? ? ? ? ? spia block diagram the	spia 	serial	interface	function	includes	the	following	features: ?	 full-duplex	synchronous	data	transfer	 ?	 both	master	and	slave	mode ?	 lsb	frst	or	msb	frst	data	transmission	modes ?	 transmission 	complete	fag ?	 rising	or	falling	active	clock	edge ?	 sawcol 	and	sacsen	bits	enabled	or	disable	select the	 status	 of	 the	 spia 	 interface	 pins	 is	 determined	 by	 a	 number	 of	 factors	 such	 as	 whether	 the 	 device 	 is	 in	 the 	 master	 or	 slave 	 mode 	 and	 upon 	 the 	 condition 	of 	 certain 	 control 	 bits	 such	 as	 sacsen 	 and	spiaen. there	 are	 several	 configuration	 options	 associated	 with	 the	 spia 	 interface.	 one	 of	 these	 is	 to 	 enable	 the	 spia 	 function	 which	 selects	 the	 spia 	 pins	 rather	 than	 normal	 i/o	 pins.	 note	 that	 if	 the	 confguration	 option	 does	 not	 select	 the	 spia 	 function	 then	 the	 spiaen	 bit	 in	 the	 spiac0	 register	 will	 have	 no	 effect. 	 two 	 confguration	 options,	 which	 are	 used	 to	 control	 the	 csen	 and	 wcol 	 bit	 functions,	are	also	used	to	determine	if	the	sacsen	and	 sawcol 	bits	are	to	be	used.

 rev. 1.10 104 ?a? 0?? ?01? rev. 1.10 105 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu spia registers there	 are	 three	 registers	 which	 control	 the	 overall	 operation	 of	 the	 spia 	 interface.	 these	 are	 the 	 spiad	data	registers	and	two	control	registers	spiac0	and	spiac1. register name bit 7 6 5 4 3 2 1 0 spiac0 saspi? saspi1 saspi0 spiaen spiac1 sackpol sackeg sa?ls sacsen sawcol satrf spiad d7 d6 d5 d4 d3 d? d1 d0 spia registers list the	 spiad	 register	 is	 used	 to	 store	 the	 data	 being	 transmitted	 and	 received.	 before	 the	 device 	 writes	 data	 to	 the	 spia 	 bus,	 the	 actual	 data	 to	 be	 transmitted	 must	 be	 placed	 in	 the	 spiad	 register. 	 after	 the	 data	 is	 received	 from	 the	 spia 	 bus,	 the	 device	 can	 read	 it	 from	 the	 spiad	 register. 	 any	 transmission	or	reception	of	data	from	the	spia 	bus	must	be	made	via	the	spiad	registers. ?	 spiad register bit 7 6 5 4 3 2 1 0 name spd7 spd6 spd5 spd4 spd3 spd? spd1 spd0 r/w r/w r/w r/w r/w r/w r/w r/w r/w por unknown there	 are	 also	 two	 control	 registers	 for	 the	 spia 	 interface,	 spiac0	 and	 spiac1.	 register	 spiac0	 is	 used	 to	 control	 the	 enable/disable	 function	 and	 to	 set	 the	 data	 transmission	 clock	 frequency. 	 register	 spiac1	 is	 used	 for	 other	 control	 functions	 such	 as	 lsb/msb	 selection,	 write	 collision 	 fag,	etc. ?	 spiac0 register bit 7 6 5 4 3 2 1 0 name saspi? saspi1 saspi0 spiaen r/w r/w r/w r/w r/w por 1 1 1 0 0 0 0 0 bit	7 ~5 	 saspi2~saspi0: spia master/slave	clock	select 	 		 000:	spia master, 	f /4 	 		001:	spia master, 	f /16 	 		010:	spia master, 	f /64 	 		 011:	spia master, 	f lxt 	 		100:	spia master, 	 timer 	0	overfow/2	(pfd0) 	 		101:	spia slave	 	 		 110: 	reserved 	 		 :	reserved bit	 4~2 	 unimplemented, 	read	as	0 bit	 	 spiaen: 	spia 	enable	or	disable 	 		0:	disable 	 		1:	enable 	 the	bit	is	the	overall	 on/off	control	for	the	spi 	interface.	 when	the	s pia en	bit	 is	cleared	to	zero	to	disable	the	 spia 	interface,	the	sdi ,	sdo ,	sck 	and	 scsa 	 lines	will 	lose	their	spi	function	and 	the	s pia 	operating	current	will	be	reduced	to	a	 minimum	value.	 when	the	bit 	i s	high,	the	 spia 	interface	is	enabled. bit	 0 	 unimplemented, 	read	as	0

 rev. 1.10 104 ?a? 0?? ?01? rev. 1.10 105 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ? spiac1 register bit 7 6 5 4 3 2 1 0 name sackpol sackeg sa?ls sacsen sawcol satrf r/w r/w r/w r/w r/w r/w r/w por 0 0 0 0 0 0 %lw a 8qlpsohphqwhg uhdgdv %lw sackpol: hwhuplhvwkhedvhfrglwlrriwkhforfnolh 6 olhzlooehklkzkhwkhforfnlvldfwlh 6 olhzlooehorzzkhwkhforfnlvldfwlh 7kh632/ elwghwhuplhvwkhedvhfrglwlrriwkhforfnolhliwkhelwlvklk wkhwkh6 olhzlooehorzzkhwkhforfnlvldfwlh :khwkh632/ elwlv orz wkhwkh6 olhzlooehklkzkhwkhforfnlvldfwlh lw sackeg: hwhuplhvwkh63, 6 dfwlhforfnhghwsh 632/ 6 kdvklkedvhohhozlwkgdwdfdswxuhr6 ulvlhgh 6 kdvklkedvhohhozlwkgdwdfdswxuhr6 idoolhgh 632/ 6 kdvorzedvhohhozlwkgdwdfdswxuhr6 idoolhgh 6 kdvorzedvhohhozlwkgdwdfdswxuhr6 ulvlhgh 7kh6dg632/ elwvduhxvhgwrvhwxswkhzdwkdwwkhforfnvldo rxwsxwvdglsxwvgdwdrwkh63, exv 7khvhwzrelwvpxvwehfrxuhgehiruhd gdwdwudvihulvhhfxwhgrwkhuzlvhdhuurhrxvforfnhghpdehhhudwhg 7kh 632/ elwghwhuplhvwkhedvhfrglwlrriwkhforfnolhliwkhelwlvklkwkh wkh6 olhzlooehorzzkhwkhforfnlvldfwlh :khwkh632/ elwlv orz wkhwkh6 olhzlooehklkzkhwkhforfnlvldfwlh 7kh6elw ghwhuplhv dfwlh forfn hgh wsh zklfk ghshgvxsr wkh frglwlrri wkh 632/ elw lw samls: gdwdvkliwrughu wkh/6rigdwdlvwudvplwwhguvw wkh06rigdwdlvwudvplwwhguvw 7klvlvwkhgdwdvkliwvhohfwelwdglvxvhgwrvhohfwkrzwkhgdwdlvwudvihuuhghlwkhu 06ru/6uvw6hwwlwkhelwklkzloovhohfw06uvwdgorziru/6uvw lw sacsen: 63, vhohfwvldo 66 hdeohrwuro lvdeoh deoh 7kh661elwlvxvhgdvdhdeohglvdeohiruwkh 66 sawcol 63, :ulwh roolvlrd roolvlriuhh roolvlrghw hfwhg 7kh 6:2/ dlvxvhgwrghwhfwlidgdwdfroolvlrkdvrffxuuhg,iwklvelwlvklk lwphdvwkdwgdwdkdvehhdwwhpswhgwrehzulwwhwrwkh63,uhlvwhugxuldgdwd wudvihurshudwlr 7klvzulwlrshudwlrzlooehlruhgligdwdlvehlwudvihuuhg 7khelwfdehfohduhgewkhdssolfdwlrsurudp1rwhwkdwwkh 6:2/ ixfwlr fdehhdeohgruglvdeohlddfrxudwlrrswlr lw satrf1: 63, 7udvplw5hfhlh rpsohwhd dwdlvehlwudvihuuhg 63, gdwdwudvplvvlrlvfrpsohwhg

 rev. 1.10 106 ?a? 0?? ?01? rev. 1.10 107 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu 	 the	 satrf	bit	is	the	 transmit/receive 	complete	fag	and	is	set	to1	automatically	 when	an	spia 	data	transmission	is	completed,	but	must	cleared	to	0	by	the	 application	program.	it	can	be	used	to	generate	an	interrupt. spia communication after	 the	 spia 	 interface	 is	 enabled	 by	 setting	 the	 spiaen	 bit	 high,	 then	 in	 the	 master	 mode,	 when	 data	 is	 written	 to	 the	 spiad	 register, 	 transmission/reception	 will	 begin	 simultaneously. 	 when	 the 	 data 	 transfer 	 is 	 complete, 	 the 	 satrf 	 fag 	 will 	 be 	 set 	 automatically, 	 but 	 must 	 be	 cleared 	 using 	 the 	 application	 program.	 in	 the	 slave	 mode,	 when	 the	 clock	 signal	 from	 the	 master	 has	 been	 received,	 any	 data	 in	 the	 spiad	 register	 will	 be	 transmitted	 and	 any	 data	 on	 the	 sdia 	 pin	 will	 be	 shifted	 into	 the	spiad	registers the	 master	 should	 output	 a	 scsa 	 signal	 to	 enable	 the	 slave	 device	 before	 a	 clock	 signal	 is	 provided.	 the	 slave	 data	 to	 be	 transferred	 should	 be	 well	 prepared	 at	 the	 appropriate	 moment	 relative	 to 	 the	 scsa 	 signal	 depending	 upon	 the	 configurations	 of	 the	 sackpol 	 bit	 and	 sackeg	 bit.	 the 	 accompanying	 timing	 diagram	 shows	 the	 relationship	 between	 the	 slave	 data	 and	 scsa 	 signal	 for 	 various	confgurations	of	the	sackpol 	and	sackeg	bits. the	spia 	will	continue	to	function	even	in	the	idle	mode. spia master mode

 	 � � � � ?
 � ?? � � ?? � � ?? � ?� -? � ?� ?? � -� ?? � ?� ? � ?� ? � ? � ?? � � ?? � � ?? � ?� -? � ?� ?? � -� ?? � ?� ? � ?� ? � ? ?
 ? � spia slave mode (sackeg=0)

 	 	 	 	 	 	 	 	
 � ? ? ? ???
? ? - ? �?

 rev. 1.10 106 ?a? 0?? ?01? rev. 1.10 107 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu spia slave mode (sackeg=1)

 	 	 	 	 	 	 	 	
 � ??? ? ? ? ? ? ? ?? ��
 ?? ? - ? ? ? - ? ?? ?? ? ? ? ? - ? ? ?? ? ? ? ? ?? ? ? ??? ? ?? ? ? ? ? ? ? ?? spia master/slave modetiming diagram a write	data	into	 spiad clear	sawcol sawcol=1? transmission	 completed ? satrf=1?) read	data	from	 spiad clear	satrf transfer	 finished? end y n n y y n master	or slave? spia	transfer saspi[2:0]=000,001, 010,011	or	100 saspi[2:0]=101 configure	sackpol,	sackeg,	 sacsen	and	samls spiaen=1 a master slave spia transfer control flowchart

 rev. 1.10 108 ?a? 0?? ?01? rev. 1.10 109 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu spia bus enable/disable to 	 enable	 the	 spia 	 bus,	 set	 sacsen	 =	 1	 and	 scsa=0,	 then	 wait	 for	 data	 to	 be	 written	 into	 the 	 spiad	 (txrx	 buffer) 	 register. 	 for	 the	 master	 mode,	 after	 data	 has	 been	 written	 to	 the	 spiad 	 (txrx 	 buffer)	 register,	then	 transmission	or	reception	will	start	 automatically.	 when	all	the	data	has 	 been	 transferred	 the	 satrf 	 bit	 should	 be	 set.	 for	 the	 slave	 mode,	 when	 clock	 pulses	 are	 received	 on	scka,	data	in	the	 txrx	 buffer	will	be	shifted	out	or	data	on	sdia 	will	be	shifted	in. to 	disable	the	spia 	bus	scka,	sdia,	sdoa,	 scsa will	become	i/o 	pins	or	the	other	functions. spia operation all	communication	is	carried	out	using	the	4-line	interface	for	either	master	or	slave	mode.	 the	 sacsen	 bit	 in	 the	 spiac1	 register	 controls	 the	 overall	 function	 of	 the	 spia 	 interface.	 setting	 this	 bit	 high	 will	 enable	 the	 spia 	 interface	 by	 allowing	 the	 scsa line 	 to	 be	 active,	 which	 can	 then	 be	 used	 to	 control 	 the	 spia 	 interface. 	 if	 the	 sacsen	 bit	 is	 low, 	 the	 spia 	 interface	 will	 be	 disabled	 and	 the	 scsa line	 will	 be	 an	 i/o	 pin	 or	 other	 functions	 and	 can	 therefore	 not	 be	 used	 for	 control 	 of	 the	 spia 	 interface. 	 if	 the	 sacsen	 bit	 and	 the	 spiaen	 bit	 in	 the	 spiac0	 register	 are	 set	 high,	 this	 will	 place	 the	 sdia 	 line	 in	 a	 foating	 condition	 and	 the	 sdoa 	 line 	 high.	 if	 in	 master	 mode	 the	 scka 	 line	 will	 be	 either	 high	 or	 low	 depending	 upon	 the	 clock	 polarity	 selection	 bit	 sackpolb	 in	 the	 spiac1	 register. 	 if	 in	 slave	 mode	 the	 scka 	 line	 will	 be	 in	 a	 foating	 condition.	 if	 spiaen	 is	 low	 then	 the	 bus	 will	 be	 disabled	 and	 scsa ,	 sdia,	 sdoa 	 and	 scka 	 will	 all	 become	 i/o	 pins	 or	 other	 functions.	 in	 the	 master	 mode	 the	 master	 will	 always	 generate	 the	 clock	 signal.	 the	 clock	 and	 data	 transmission	 will	 be	 initiated	 after	 data	 has	 been	 written	 into	 the	 spiad	 register. 	 in	 the	 slave	 mode,	 the	 clock	 signal	 will	 be	 received	 from	 an	 external	 master	 device	 for	 both	 data	 transmission	 and	 reception.	 the	 following	 sequences	 show 	 the	 order	 to	 be	 followed	 for	 data	 transfer 	 in	 both 	 master	and	slave	mode: master mode ?	 step	1 select	 the	 clock	 source	 and	 master	 mode	 using	 the	 saspi2~saspi0	 bits	 in	 the	 spiac0	 control	 register ?	 step	2 setup	 the	 sacsen	 bit	 and	 setup	 the	 samls	 bit	 to	 choose	 if	 the	 data	 is	 msb	 or	 lsb	 frst,	 this	 must	be	same	as	the	slave	device. ?	 step	3 setup	the	spiaen	bit	in	the	spiac0	control	register	to	enable	the	spia 	interface. ?	 step	4 for	 write	 operations:	 write	 the	 data	 to	 the	 spiad	 register, 	 which	 will	 actually	 place	 the	 data	 into	 the	 txrx	 buffer.	 then	use	the	scka 	and		 scsa 	lines	to	output	the	 data.	 after	this	go	to	step	5. for	 read	 operations:	 the	 data	 transferred	 in	 on	 the	 sdia 	 line	 will	 be	 stored	 in	 the	 txrx	 buffer 	 until	all	the	data	has	been	received	at	which	point	it	will	be	latched	into	the	spiad	 register. ?	 step	5 check	 the	 sawcol 	 bit	 if	 set	 high	 then	 a	 collision	 error	 has	 occurred	 so	 return	 to	 step	 4.	 if	 equal	 to	zero	then	go	to	the	following	step. ?	 step	6 check	the	 satrf	bit	or	wait	for	a	spia 	serial	bus	interrupt.

 rev. 1.10 108 ?a? 0?? ?01? rev. 1.10 109 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ?	 step	7 read	data	from	the	spiad	 register. ?	 step	8 clear	 satrf. ?	 step	9 go	to	step	4. slave mode ?	 step	1 select	the	spi	slave	mode	using	the	saspi2~saspi0	bits	in	the	spiac0	control	register ?	 step	2 setup	 the	 sacsen	 bit	 and	 setup	 the	 samls	 bit	 to	 choose	 if	 the	 data	 is	 msb	 or	 lsb	 frst,	 this	 setting	must	be	the	same	with	the	master	device. ?	 step	3 setup	the	spiaen	bit	in	the	spiac0	control	register	to	enable	the	spia 	interface. ?	 step	4 for	 write	 operations:	 write	 the	 data	 to	 the	 spiad	 register, 	 which	 will	 actually	 place	 the	 data	 into	 the	 txrx	 buffer.	 then	wait	for	the	master	clock	scka 	and	 scsa 	signal.	 after	this,	go	to	step	5. for	 read	 operations:	 the	 data	 transferred	 in	 on	 the	 sdia 	 line	 will	 be	 stored	 in	 the	 txrx	 buffer 	 until	all	the	data	has	been	received	at	which	point	it	will	be	latched	into	the	spiad	 register. ?	 step	5 check	 the	 sawcol 	 bit	 if	 set	 high	 then	 a	 collision	 error	 has	 occurred	 so	 return	 to	 step	 4.	 if	 equal	 to	zero	then	go	to	the	following	step. ?	 step	6 check	the	 satrf	bit	or	wait	for	a	spia 	serial	bus	interrupt. ?	 step	7 read	data	from	the	spiad	 register. ?	 step	8 clear	 satrf. ?	 step	9 go	to	step	4. error detection the	 sawcol 	 bit	 in	 the	 spiac	 register	 is	 provided	 to	 indicate	 errors	 during	 data	 transfer. 	 the	 bit	 is	 set	 by	 the	 spia 	 serial	 interface	 but	 must	 be	 cleared	 by	 the	 application 	 program.	 this	 bit	 indicates	 a	 data	 collision	 has	 occurred	 which	 happens	 if	 a	 write	 to	 the	 spiad	 register	 takes	 place	 during	 a 	 data	 transfer 	 operation	 and	 will 	 prevent	 the	 write 	 operation	 from	 continuing.	 the	 sawcol 	 and 	 sacsen	functions	can	be	disabled	or	enabled	by	confguration	options.

 rev. 1.10 110 ?a? 0?? ?01? rev. 1.10 111 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu low voltage detector C lvd each	 device	 has	 a	 low	 voltage 	 detector	 function,	 also	 known	 as	 lvd. 	 this	 enables	 the	 device	 to	 monitor	 the	 power	 supply	 voltage,	 v dd ,	 and	 provide	 a	 warning	 signal	 should	 it	 fall	 below	 a	 certain	 level.	 this	 function	 may	 be	 especially	 useful	 in	 battery	 applications	 where	 the	 supply	 voltage	 will	 gradually	reduce	as	the	battery	ages,	as	it	allows	an	early	warning	battery	low	signal	to	be	generated.	 lvd register the 	 low 	 voltage 	 detector 	 is 	 controlled 	 using 	 a 	 single 	 register, 	 lvdc, 	 and 	 confguration 	 options. 	 the	 voltage	 threshold	 level	 to	 be	 detected	 is	 determined	 using	 a	 configuration	 option,	 therefore 	 cannot	be	modifed	by	the	application	program.	 a 	 low	 voltage	 condition	 is	 indicated 	 when	 the	 lvdo 	 bit	 is	 set.	 if	 the	 lvdo 	 bit	 is	 low, 	 this	 indicates	 that	 the	 v dd 	 voltage	 is 	 above	 the	 preset 	 low 	 voltage	 value.	 the	 lvden 	 bit	 is 	 used	 to	 control	 the 	 overall	 on/off 	 function	 of	 the	 low	 voltage	 detector. 	 setting	 the	 bit	 high	 will	 enable	 the	 low	 voltage	 detector. 	 clearing 	 the	 bit	 to	 zero	 will	 switch	 off 	 the	 internal	 low	 voltage	 detector	 circuits.	 as	 the	 low	 voltage	detector	will	consume	a	certain	amount	of	 power,	it	may	be	desirable	to	switch	 off	the	circuit 	 when	not	in	use,	an	important	consideration	in	power	sensitive	battery	powered	applications. ? lvdc register bit 7 6 5 4 3 2 1 0 name lvdc lvden r/w r r/w por 0 0 bit	7~6	 	 unimple mented,	read	as	"0" bit	 5	 	 lvdo :	 lvd	output	flag 	 	 	 		0:	no	low	 voltage 	detect 	 	 	 		1:	low	 voltage 	detect bit	4	 		 lvden :	low	 voltage 	detector	control 	 	 	 		0:	disable 	 	 	 		1:	enable bit	 3~0:	 unimplemented,	read 	as	"0" lvd operation the	 low	 voltage 	 detector	 function	 operates	 by	 comparing	 the	 power	 supply	 voltage,	 v dd ,	 with	 a 	 pre-specifed	 voltage	 level	 voltage	 level	 setup	 using	 a	 confguration	 option. 	 when	 the	 power	 supply	 voltage,	 v dd ,	 falls	 below	 this	 pre-determined	 value,	 the	 lvdo 	 bit	 will	 be	 set	 high	 indicating	 a	 low	 power	 supply	 voltage	 condition.	 the	 low	 voltage 	 detector	 function	 is	 supplied	 by	 a	 reference 	 voltage	 which	 will	 be	 automatically	 enabled.	 when	 the	 device	 is	 powered	 down	 the	 low	 voltage 	 detector	 will	 remain	 active	 if	 the	 lvden 	 bit	 is	 high.	 after	 enabling	 the	 low	 voltage 	 detector, 	 a 	 time	 delay 	 t lvds 	 should	 be	 allowed 	 for	 the	 circuitry 	 to	 stabilise	 before	 reading	 the	 lvdo 	 bit.	 note	 also	 that	 as	 the	 v dd 	 voltage	 may	 rise	 and	 fall	 rather	 slowly, 	 at	 the	 voltage	 nears	 that	 of	 vlvd, 	 there	 may	be	multiple	bit	 lvdo	transitions. lvd operation

 rev. 1.10 110 ?a? 0?? ?01? rev. 1.10 111 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu confguration options confguration	 options	 refer	 to	 certain	 options	 within	 the	 mcu	 that	 are	 programmed	 into	 the	 otp 	 program	 memory	 device	 during	 the	 programming	 process.	 during	 the	 development	 process, 	 these	 options	 are	 selected	 using	 the	 ht-ide 	 software	 development	 tools.	 as	 these	 options	 are 	 programmed	 into	 the	 device	 using 	 the	 hardware 	 programming	 tools, 	 once	 they	 are	 selected 	 they 	 can	 not	 be	 changed	 later	 by	 the	 application	 software.	 all	 options	 must	 be	 defned	 for	 proper	 system	 function,	the	details	of	which	are	shown	in	the	table. no. options oscillator options 1 high speed s?stem oscillator selection - f h : 1. hxt ?. erc 3. hirc ? low speed s?stem oscillator selection - f l : 1. lxt ?. lirc 3 wdt clock selection - f s : 1. lxt ?. lirc 3. f sys /4 4 hirc frequenc? selection: 1. 4?hz ?. 8?hz 3. 1??hz reset pin options 5 pa7/ res pin options: 1. res pin ?. i/o pin watchdog options 6 watchdog timer function: 1. enable ?. disable 7 clrwdt instructions selection: 1. 1 instructions ?. ? instructions lvr options 8 lvr function: 1. enable ?. disable 9 lvr/lvd voltage selection: 1. ?.1v/?.?v ?. 3.15v/3.3v 3. 4.?v/4.4v sim/spia options 10 si? function: 1. enable ?. disable 11 spi/spia - wcol/sawcol bits: 1. enable ?. disable 1? spi/spia - csen/sacsen bits: 1. enable ?. disable 13 i ? c debounce time selection: 1. no debounce ?. ? s?stem clock debounce 3. 4 s?stem clock debounce

 rev. 1.10 11 ? ?a? 0?? ?01? rev. 1.10 113 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu no. options 14 spia function: 1. enable ?. disable dac options 15 dac function: 1. dac ?. i/o application circuit

 	 � ? ? note:	"*"	it	is	recommended	that	this	component	is	added	for	esd	protection. 	 "**" 	it	is	recommended	that	 this	component	is	added	in	 environments	where	power	line	noise	 is	signifcant.

 rev. 1.10 11 ? ?a? 0?? ?01? rev. 1.10 113 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu instruction set introduction central	 to	 the	 successful	 operation	 of	 any	 microcontroller	 is	 its	 instruction	 set,	 which	 is	 a	 set	 of 	 program	 instruction	 codes	 that	 directs 	 the	 microcontroller	 to	 perform	 certain	 operations.	 in	 the	 case	 of	 holtek	 microcontrollers,	 a	 comprehensive	 and	 fexible	 set	 of	 over	 60	 instructions	 is	 provided	 to	 enable	programmers	to	implement	their	application	with	the	minimum	of	programming	overheads. for	 easier	 understanding	 of	 the	 various	 instruction	 codes,	 they	 have	 been	 subdivided	 into	 several 	 functional	groupings. instruction timing most	 instructions	 are	 implemented	 within	 one	 instruction	 cycle.	 the	 exceptions	 to	 this	 are	 branch,	 call,	 or	 table	 read	 instructions	 where	 two	 instruction 	 cycles	 are	 required.	 one	 instruction	 cycle	 is 	 equal	 to	 4	 system	 clock	 cycles,	 therefore	 in	 the	 case	 of	 an	 8mhz	 system	 oscillator, 	 most	 instructions	 would	 be	 implemented	 within	 0.5s	 and	 branch	 or	 call	 instructions	 would	 be	 implemented	 within 	 1s.	 although	 instructions	 which	 require	 one	 more	 cycle	 to	 implement	 are	 generally	 limited	 to 	 the	 jmp, 	 call,	 ret, 	 reti	 and	 table	 read	 instructions,	 it	 is	 important	 to	 realize	 that	 any	 other 	 instructions	 which	 involve	 manipulation	 of	 the	 program	 counter	 low	 register	 or	 pcl 	 will	 also	 take	 one	 more	 cycle	 to	 implement.	 as 	 instructions 	 which	 change	 the	 contents	 of	 the	 pcl 	 will	 imply	 a 	 direct 	 jump 	 to 	 that 	 new 	 address, 	 one 	 more 	 cycle 	 will 	 be 	 required. 	 examples 	 of	 such 	 instructions 	 would	 be	 clr	 pcl	 or	 mov 	 pcl,	 a.	 for	 the	 case	 of	 skip	 instructions,	 it	 must	 be	 noted	 that	 if	 the	 result	 of	 the	 comparison	 involves	 a	 skip	 operation	 then	 this	 will	 also	 take	 one	 more	 cycle,	 if	 no	 skip	is	involved	then	only	one	cycle	is	required. moving and transferring data the 	 transfer 	 of	 data 	 within 	 the 	 microcontroller 	 program 	 is 	 one 	 of	 the 	 most 	 frequently 	 used 	 operations.	 making	 use	 of	 three	 kinds	 of	 mov 	 instructions,	 data	 can	 be	 transferred	 from	 registers	 to	 the	 accumulator	 and	 vice-versa	 as	 well	 as	 being	 able	 to	 move	 specifc	 immediate	 data	 directly	 into	 the 	 accumulator. 	 one 	 of	 the 	 most 	 important 	 data 	 transfer 	 applications 	 is 	 to 	 receive 	 data 	 from 	 the 	 input	ports	and	transfer	data	to	the	output	ports. arithmetic operations the	 ability	 to	 perform	 certain	 arithmetic 	 operations	 and	 data	 manipulation 	 is	 a	 necessary	 feature	 of	 most 	 microcontroller 	 applications. 	 within 	 the 	 holtek 	 microcontroller 	 instruction 	 set 	 are 	 a 	 range 	 of 	 add	 and	 subtract	 instruction	 mnemonics	 to	 enable	 the	 necessary	 arithmetic	 to	 be	 carried	 out.	 care 	 must 	 be	 taken	 to	 ensure 	 correct	 handling	 of	 carry	 and	 borrow 	 data	 when 	 results 	 exceed	 255	 for 	 addition	and	less	than	0	for	subtraction.	 the	increment	 and	decrement	 instructions	inc,	 inca,	 dec	 and	 deca 	 provide	 a	 simple	 means	 of	 increasing	 or	 decreasing	 by	 a	 value	 of	 one	 of	 the	 values	 in	 the	 destination	specifed.

 rev. 1.10 114 ?a? 0?? ?01? rev. 1.10 115 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu logical and rotate operations the	 standard	 logical	 operations	 such	 as	 and,	 or,	 xor	 and	 cpl 	 all	 have	 their	 own	 instruction 	 within 	 the 	 holtek 	 microcontroller 	 instruction 	 set. 	 as	 with 	 the 	 case 	 of	 most 	 instructions 	 involving 	 data 	 manipulation, 	 data 	 must 	 pass 	 through 	 the 	 accumulator 	 which 	 may 	 involve 	 additional 	 programming	 steps.	 in	 all	 logical	 data	 operations,	 the	 zero	 flag	 may	 be	 set	 if	 the	 result	 of	 the 	 operation	 is	 zero.	 another	 form	 of	 logical	 data	 manipulation	 comes	 from	 the	 rotate	 instructions	 such	 as	 rr,	 rl,	 rrc	 and	 rlc	 which	 provide	 a	 simple	 means	 of	 rotating	 one	 bit	 right	 or	 left.	 different 	 rotate	 instructions 	 exist	 depending	 on	 program	 requirements.	 rotate	 instructions	 are	 useful	 for	 serial	 port 	 programming 	 applications 	 where 	 data 	 can 	 be 	 rotated 	 from 	 an 	 internal 	 register 	 into 	 the 	 carry 	 bit	 from	 where	 it	 can	 be	 examined	 and	 the	 necessary	 serial	 bit	 set	 high	 or	 low. 	 another	 application	 where	rotate	data	operations	are	used	is	to	implement	multiplication	and	division	calculations. branches and control transfer program	 branching	 takes	 the	 form	 of	 either	 jumps	 to	 specifed	 locations 	 using	 the	 jmp 	 instruction	 or	 to	 a	 subroutine	 using	 the	 call 	 instruction.	 they	 differ 	 in	 the	 sense	 that	 in	 the	 case	 of	 a	 subroutine	 call,	 the	 program	 must	 return	 to	 the	 instruction	 immediately	 when	 the	 subroutine	 has	 been	 carried 	 out.	 this	 is	 done	 by	 placing	 a	 return	 instruction	 ret 	 in	 the	 subroutine	 which	 will	 cause	 the	 program	 to	 jump	 back	 to	 the	 address	 right	 after	 the	 call 	 instruction.	 in	 the	 case	 of	 a	 jmp 	 instruction,	 the	 program	 simply	 jumps	 to	 the	 desired	 location.	 there	 is	 no	 requirement	 to	 jump	 back	 to	 the	 original	 jumping	 off 	 point 	 as	 in	 the	 case	 of	 the	 call 	 instruction. 	 one	 special 	 and	 extremely	 useful	 set 	 of	 branch	 instructions	 are	 the	 conditional	 branches.	 here	 a	 decision	 is	 first	 made	 regarding	 the 	 condition	 of	 a	 certain	 data	 memory	 or	 individual	 bits.	 depending	 upon	 the	 conditions,	 the	 program	 will	 continue	 with	 the	 next	 instruction	 or	 skip	 over	 it	 and	 jump	 to	 the	 following	 instruction.	 these	 instructions	 are	 the	 key	 to	 decision	 making	 and	 branching	 within	 the	 program	 perhaps	 determined 	 by	the	condition	of	certain	input	switches	or	by	the	condition	of	internal	data	bits. bit operations the	 ability 	 to	 provide	 single	 bit	 operations	 on	 data	 memory	 is	 an	 extremely	 fexible	 feature	 of	 all	 holtek	 microcontrollers.	 this	 feature	 is	 especially	 useful	 for	 output	 port	 bit	 programming	 where 	 individual	bits	or	port	pins	can	be	directly	set	high	or	low	using	either	the	set 	[m].i	or	clr	[m].i 	 instructions	 respectively. 	 the	 feature	 removes	 the	 need	 for	 programmers	 to	 frst	 read	 the	 8-bit	 output	 port,	manipulate	the	input	data	to	ensure	that	other	bits	are	not	changed	and	then	output	the	port	with	 the	 correct	 new	 data.	 this	 read-modify-write	 process	 is	 taken	 care	 of	 automatically	 when	 these	 bit	 operation	instructions	are	used. table read operations data 	 storage 	 is 	 normally 	 implemented 	 by	 using 	 registers. 	 however, 	 when 	 working	 with 	 large 	 amounts	 of	 fxed	 data,	 the	 volume	 involved	 often	 makes	 it	 inconvenient	 to	 store	 the	 fxed	 data	 in 	 the	 data	 memory. 	 to 	 overcome	 this	 problem,	 holtek	 microcontrollers	 allow	 an	 area	 of	 program 	 memory	 to	 be	 setup	 as	 a	 table	 where	 data	 can	 be	 directly	 stored.	 a 	 set 	 of	 easy	 to	 use	 instructions 	 provides 	 the	 means 	 by	 which 	 this	 fixed	 data	 can	 be	 referenced	 and	 retrieved	 from	 the	 program 	 memory. other operations in	 addition	 to	 the	 above	 functional	 instructions,	 a	 range	 of	 other	 instructions	 also	 exist	 such	 as 	 the	 halt 	 instruction	 for	 power-down 	 operations	 and	 instructions	 to	 control	 the	 operation	 of 	 the	 watchdog 	 timer 	 for	 reliable	 program	 operations	 under	 extreme	 electric	 or	 electromagnetic 	 environments.	for	their	relevant	operations,	refer	to	the	functional	related	sections.

 rev. 1.10 114 ?a? 0?? ?01? rev. 1.10 115 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu instruction set summary the	 following	 table	 depicts	 a	 summary	 of	 the	 instruction	 set	 categorised	 according	 to	 function	 and	 can	be	consulted	as	a	basic	instruction	reference	using	the	following	listed	conventions. table 	conventions: 	 x:	bits	immediate	data 	 m:	data	memory	address 	 a:	 accumulator 	 i:	0~7	number	of	bits 	 addr:	program	memory	address mnemonic description cycles flag affected arithmetic add a?[m] add? a?[m] add a?x adc a?[m] adc? a?[m] sub a?x sub a?[m] sub? a?[m] sbc a?[m] sbc? a?[m] daa [m] add data ?emor? to acc add acc to data ?emor? add immediate data to acc add data ?emor? to acc with carr? add acc to data memor ? with carr? subtract immediate data from the acc subtract data ?emor? from acc subtract data ?emor? from acc with result in data ?emor? subtract data ?emor? from acc with carr? subtract data ?emor? from acc with carr ?? result in data ?emor? decimal adjust acc for addition with result in data ?emor? 1 1 note 1 1 1 note 1 1 1 note 1 1 note 1 note z? c? ac? ov z? c? ac? ov z? c? ac? ov z? c? ac? ov z? c? ac? ov z? c? ac? ov z? c? ac? ov z? c? ac? ov z? c? ac? ov z? c? ac? ov c logic operation and a?[m] or a?[m] xor a?[m] and? a?[m] or? a?[m] xor? a?[m] and a?x or a?x xor a?x cpl [m] cpla [m] logical and data ?emor? to acc logical or data ?emor? to acc logical xor data ?emor? to acc logical and acc to data ?emor? logical or acc to data ?emor? logical xor acc to data ?emor? logical and immediate data to acc logical or immediate data to acc logical xor immediate data to acc complement data ?emor? complement data ?emor? with result in acc 1 1 1 1 note 1note 1note 1 1 1 1note 1 z z z z z z z z z z z increment & decrement inca [m] inc [m] deca [m] dec [m] increment data ?emor? with result in acc increment data ?emor? decrement data ?emor? with result in acc decrement data ?emor? 1 1 note 1 1note z z z z rotate rra [m] rr [m] rrca [m] rrc [m] rla [m] rl [m] rlca [m] rlc [m] rotate data ?emor? right with result in acc rotate data ?emor? right rotate data ?emor? right through carr? with result in acc rotate data ?emor? right through carr? rotate data ?emor? left with result in acc rotate data ?emor? left rotate data ?emor? left through carr? with result in acc rotate data ?emor? left through carr? 1 1 note 1 1 note 1 1 note 1 1 note none none c c none none c c data move ? ov a?[m] ?ov [m]?a ? ov a?x ?ove data ?emor? to acc ? ove acc to data ?emor? ? ove immediate data to acc 1 1 note 1 none none none bit operation clr [m].i set [m].i clear bit of data ?emor? set bit of data ?emor? 1 note 1 note none none

 rev. 1.10 116 ?a? 0?? ?01? rev. 1.10 117 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu mnemonic description cycles flag affected branch j? p addr sz [m] sza [m] sz [m].i snz [m].i siz [m] sdz [m] siza [m] sdza [m] call addr ret ret a ?x reti jump unconditionall? skip if data ?emor? is zero skip if data ?emor? is zero with data movement to acc skip if bit i of data ?emor? is zero skip if bit i of data ?emor? is not zero skip if increment data ?emor? is zero skip if decrement data ?emor? is zero skip if increment data ?emor? is zero with result in acc skip if decrement data ?emor? is zero with result in acc subroutine call return from subroutine return from subroutine and load immediate data to acc return from interrupt ? 1 note 1 note 1 note 1 note 1 note 1 note 1 note 1 note ? ? ? ? none none none none none none none none none none none none none table read tabrd [m] tabrdl [m] read table (current page) to tblh and data ?emor? read table (last page) to tblh and data ?emor? ? note ? note none none miscellaneous nop clr [m] set [m] clr wdt clr wdt1 clr wdt? swap [m] swapa [m] halt no operation clear data ?emor? set data ?emor? clear watchdog timer pre-clear watchdog timer pre-clear watchdog timer swap nibbles of data ?emor? swap nibbles of data ?emor? with result in acc enter power down mode 1 1 note 1 note 1 1 1 1 note 1 1 none none none to ? pdf to ? pdf to ? pdf none none to ? pdf note:	1.	for	skip	instructions,	if	the	result	of	the	comparison	involves	a	skip	then	two	cycles	are	required,	if	no	 skip	takes	place	only	one	cycle	is	required. 2.	 any	instruction	which	changes	the	contents	of	the	pcl 	will	also	require	2	cycles	for	execution. 3.	for	the	clr	 wdt1	and	clr	 wdt2	instructions	the	 to 	and	pdf	fags	may	be	 affected	by	 the	execution	status.	 the	 to 	and	pdf	fags	are	cleared	after	both	clr	 wdt1	and	clr	 wdt2	 instructions	are	consecutively	executed.	otherwise	the	 to 	and	pdf	fags	remain	unchanged.

 rev. 1.10 116 ?a? 0?? ?01? rev. 1.10 117 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu instruction defnition adc a,[m] 	 add 	 data 	 memory 	 to	 acc 	 with 	 carry description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory, 	 accumulator 	 and 	 the 	 carry 	 fag 	 are 	 added. 	 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. operation	 acc 	 	 acc 	 + 	 [m] 	 + 	c affected 	 fag(s)	 ov, 	 z, 	 ac, 	 c adcm a,[m] 	 add 	 acc 	 to	 data 	 memory 	 with 	 carry description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory, 	 accumulator 	 and 	 the 	 carry 	 fag 	 are 	 added. 	 	 	 the 	 result 	 is 	 stored 	in 	 the 	 specifed 	 data 	 memory. operation	 [m] 	 	 acc 	 + 	 [m] 	 + 	 c affected 	 fag(s)	 ov, 	 z, 	 ac, 	 c add a,[m] 	 add 	 data 	 memory 	 to 	 acc description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 accumulator 	 are 	 added. 	 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. operation	 acc 	 	 acc 	 + 	 [m] affected 	 fag(s)	 ov, 	 z, 	 ac, 	 c add a,x add 	 immediate 	 data 	 to	 acc description	 the 	 contents 	 of 	 the 	 accumulator 	 and 	 the 	 specifed 	 immediate 	 data 	 are 	 added. 	 	 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. operation	 acc 	 	 acc 	 + 	 x affected 	 fag(s)	 ov, 	 z, 	 ac, 	 c addm a,[m] 	 add 	 acc 	 to	 data 	 memory description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 accumulator 	 are 	 added. 	 	 	 the 	 result 	 is 	 stored 	in 	 the 	 specifed 	 data 	 memory. operation	 [m] 	 	 acc 	 + 	 [m] affected 	 fag(s)	 ov, 	 z, 	 ac, 	 c and a,[m] 	 logical 	 and 	 data 	 memory 	 to 	 acc description	 data 	 in 	 the 	 accumulator 	 and 	 the 	 specifed 	 data 	 memory 	 perform 	 a 	 bitwise 	 logical 	 and 	 	 	 operation. 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. operation	 acc 	 	 acc 	 and 	 [m] affected 	 fag(s)	 z and a,x logical 	 and 	 immediate 	 data 	 to	 acc description	 data 	 in 	 the 	 accumulator 	 and 	 the 	 specifed 	 immediate 	 data 	 perform 	 a 	 bit 	 wise 	 logical 	 and 	 	 	 operation. 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. operation	 acc 	 	 acc 	 and 	 x affected 	 fag(s)	 z andm a,[m] 	 logical 	 and 	 acc 	 to	 data 	 memory description	 data 	 in 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 accumulator 	 perform 	 a 	 bitwise 	 logical 	 and 	 	 operation. 	 the 	 result 	 is 	 stored 	in 	 the 	 data 	 memory. operation	 [m] 	 	 acc 	 and 	 [m] affected 	 fag(s)	 z

 rev. 1.10 118 ?a? 0?? ?01? rev. 1.10 119 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu call addr 	 subroutine 	 call description	 unconditionally 	 calls 	 a 	 subroutine 	 at 	 the 	 specifed 	 address. 	 the 	 program 	 counter 	 then 	 	 increments 	 by 	 1 	 to	 obtain 	 the 	 address 	 of 	 the 	 next 	 instruction 	 which 	 is 	 then 	 pushed 	 onto 	 the 	 	 stack. 	 the 	 specifed 	 address 	 is 	 then 	 loaded 	 and 	 the 	 program 	 continues 	 execution 	 from 	 this 	 	 new 	 address. 	 as 	 this 	 instruction 	 requires 	 an 	 additional 	 operation, 	 it 	 is 	 a 	 two 	 cycle 	 instruction. operation	 stack 	 	 program 	 counter 	 + 	 1 	 	 program 	 counter 	 	 addr affected 	 fag(s)	 none clr [m] 	 clear 	 data 	 memory description	 each 	 bit 	 of 	 the 	 specifed 	 data 	 memory 	 is 	 cleared 	 to 	 0. operation	 [m] 	 	 00h affected 	 fag(s)	 none clr [m].i clear 	 bit 	 of 	 data 	 memory description	 bit 	 i 	 of 	 the 	 specifed 	 data 	 memory 	 is 	 cleared 	 to 	 0. operation	 [m].i 	 	0 affected 	 fag(s)	 none clr wdt 	 clear 	 watchdog 	 timer description	 the 	 to, 	 pdf 	 fags 	 and 	 the 	 wdt 	 are 	 all 	 cleared. 	 operation	 wdt 	 cleared 	 	 to 	 	 0 	 	 pdf 	 	 0 affected 	 fag(s)	 to, 	 pdf clr wdt1 	 pre-clear 	 watchdog 	 timer description	 the 	 to, 	 pdf 	 fags 	 and 	 the 	 wdt 	 are 	 all 	 cleared. 	 note 	 that 	 this 	 instruction 	 works 	in 	 	 conjunction 	 with 	 clr 	 wdt2 	 and 	 must 	 be 	 executed 	 alternately 	 with 	 clr 	 wdt2 	 to	 have 	 	 effect. 	 repetitively 	 executing 	 this 	 instruction 	 without 	 alternately 	 executing 	 clr 	 wdt2 	 will 	 	 have 	 no 	 effect. operation	 wdt 	 cleared 	 	 to 	 	 0 	 	 pdf 	 	0	 affected 	 fag(s)	 to, 	 pdf clr wdt2 	 pre-clear 	 watchdog 	 timer description	 the 	 to, 	 pdf 	 fags 	 and 	 the 	 wdt 	 are 	 all 	 cleared. 	 note 	 that 	 this 	 instruction 	 works 	 in 	 conjunction 	 	 	 with 	 clr 	 wdt1 	 and 	 must 	 be 	 executed 	 alternately 	 with 	 clr 	 wdt1 	 to	 have 	 effect. 	 	 	 repetitively 	 executing 	 this 	 instruction 	 without 	 alternately 	 executing 	 clr 	 wdt1 	 will 	 have 	 no 	 	 effect. operation	 wdt 	 cleared 	 	 to 	 	 0 	 	 pdf 	 	 0 affected 	 fag(s)	 to, 	 pdf cpl [m] complement 	 data 	 memory description	 each 	 bit 	 of 	 the 	 specifed 	 data 	 memory 	 is 	 logically 	 complemented 	 (1s 	 complement). 	 bits 	 which 	 	 	 previously 	 contained 	 a 	 1 	 are 	 changed 	 to	 0 	 and 	 vice 	 versa. operation	 [m] 	 	 [m] affected 	 fag(s)	 z

 rev. 1.10 118 ?a? 0?? ?01? rev. 1.10 119 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu cpla [m] 	 complement 	 data 	 memory 	 with 	 result 	 in 	 acc description	 each 	 bit 	 of 	 the 	 specifed 	 data 	 memory 	 is 	 logically 	 complemented 	 (1s 	 complement). 	 bits 	 which 	 	 	 previously 	 contained 	 a 	 1 	 are 	 changed 	 to	 0 	 and 	 vice 	 versa. 	 the 	 complemented 	 result 	 is 	 stored 	 in 	 	 the 	 accumulator 	 and 	 the 	 contents 	 of 	 the 	 data 	 memory 	 remain 	 unchanged. operation	 acc 	 	 [m] affected 	 fag(s)	 z daa [m] decimal-adjust 	 acc 	 for 	 addition 	 with 	 result 	 in 	 data 	 memory description	 convert 	 the 	 contents 	 of 	 the 	 accumulator 	 value 	 to	 a 	 bcd 	 (binary 	 coded 	 decimal) 	 value 	 	 resulting 	 from 	 the 	 previous 	 addition 	 of 	 two 	 bcd 	 variables. 	 if 	 the 	 low 	 nibble 	 is 	 greater 	 than 	 9 	 	 or 	 if 	 ac 	 fag 	 is 	 set, 	 then 	 a 	 value 	 of 	 6 	 will 	 be 	 added 	 to	 the 	 low 	 nibble. 	 otherwise 	 the 	 low 	 nibble 	 	 remains 	 unchanged. 	 if 	 the 	 high 	 nibble 	 is 	 greater 	 than 	 9 	 or 	 if 	 the 	 c 	 fag 	 is 	 set, 	 then 	 a 	 value 	 of 	 6 	 	 will 	 be 	 added 	 to	 the 	 high 	 nibble. 	 essentially, 	 the 	 decimal 	 conversion 	 is 	 performed 	 by 	 adding 	 	 00h, 	 06h, 	 60h 	 or 	 66h 	 depending 	 on 	 the 	 accumulator 	 and 	 fag 	 conditions. 	 only 	 the 	 c 	 fag 	 	 may 	 be 	 affected 	 by 	 this 	 instruction 	 which 	 indicates 	 that 	 if 	 the 	 original 	 bcd 	 sum 	 is 	 greater 	 than 	 	 	 100, 	 it 	 allows 	 multiple 	 precision 	 decimal 	 addition. operation	 [m] 	 	 acc 	 + 	 00h 	 or 	 	 [m] 	 	 acc 	 + 	 06h 	 or 	 	 	 [m] 	 	 acc 	 + 	 60h 	 or 	 	 [m] 	 	 acc 	 + 	 66h affected 	 fag(s)	 c dec [m] 	 decrement 	 data 	 memory description	 data 	 in 	 the 	 specifed 	 data 	 memory 	 is 	 decremented 	 by 	 1. operation	 [m] 	 	 [m] 	 ? 	 1 affected 	 fag(s)	 z deca 	 [m]	 decrement 	 data 	 memory 	 with 	 result 	 in 	 acc description	 data 	in 	 the 	 specifed 	 data 	 memory 	 is 	 decremented 	 by 	 1. 	 the 	 result 	 is 	 stored 	in 	 the 	 	 accumulator. 	 the 	 contents 	 of 	 the 	 data 	 memory 	 remain 	 unchanged. operation	 acc 	 	 [m] 	 ? 	 1 affected 	 fag(s)	 z halt 	 enter 	 power 	 down 	 mode description	 this 	 instruction 	 stops 	 the 	 program 	 execution 	 and 	 turns 	 off 	 the 	 system 	 clock. 	 the 	 contents 	 of 	 	 	 the 	 data 	 memory 	 and 	 registers 	 are 	 retained. 	 the 	 wdt 	 and 	 prescaler 	 are 	 cleared. 	 the 	 power 	 	 down 	 fag 	 pdf 	 is 	 set 	 and 	 the 	 wdt 	 time-out 	 fag 	 to 	 is 	 cleared. operation	 to 	 	0 	 	 pdf 	 	 1 affected 	 fag(s)	 to, 	 pdf inc [m] 	 increment 	 data 	 memory 	 description	 data 	in 	 the 	 specifed 	 data 	 memory 	 is 	 incremented 	 by 	 1. operation	 [m] 	 	 [m] 	 + 	 1 affected 	 fag(s)	 z inca [m] increment 	 data 	 memory 	 with 	 result 	 in 	 acc description	 data 	 in 	 the 	 specifed 	 data 	 memory 	 is 	 incremented 	 by 	 1. 	 the 	 result 	 is 	 stored 	 in 	 the 	 accumulator. 	 	 	 the 	 contents 	 of 	 the 	 data 	 memory 	 remain 	 unchanged. operation	 acc 	 	 [m] 	 + 	 1 affected 	 fag(s)	 z

 rev. 1.10 1?0 ?a? 0?? ?01? rev. 1.10 1?1 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu jmp addr jump 	 unconditionally description	 the 	 contents 	 of 	 the 	 program 	 counter 	 are 	 replaced 	 with 	 the 	 specifed 	 address. 	 program 	 	 execution 	 then 	 continues 	 from 	 this 	 new 	 address. 	 as 	 this 	 requires 	 the 	 insertion 	 of 	 a 	 dummy 	 	 instruction 	 while 	 the 	 new 	 address 	 is 	 loaded, 	 it 	 is 	 a 	 two 	 cycle 	 instruction. operation	 program 	 counter 	 	 addr affected 	 fag(s)	 none mov a,[m] 	 move 	 data 	 memory 	 to 	 acc description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 are 	 copied 	 to	 the 	 accumulator. operation	 acc 	 	 [m] affected 	 fag(s)	 none mov a,x move 	 immediate 	 data 	 to	 acc description	 the 	 immediate 	 data 	 specifed 	 is 	 loaded 	 into 	 the 	 accumulator. operation	 acc 	 	 x affected 	 fag(s)	 none mov [m],a 	 move 	 acc 	 to	 data 	 memory 	 description	 the 	 contents 	 of 	 the 	 accumulator 	 are 	 copied 	 to	 the 	 specifed 	 data 	 memory. operation	 [m] 	 	 acc affected 	 fag(s)	 none nop 	 no 	 operation description	 no 	 operation 	 is 	 performed. 	 execution 	 continues 	 with 	 the 	 next 	 instruction. operation	 no 	 operation affected 	 fag(s)	 none or a,[m] logical 	 or 	 data 	 memory 	 to	 acc description	 data 	 in 	 the 	 accumulator 	 and 	 the 	 specifed 	 data 	 memory 	 perform 	 a 	 bitwise 	 	 logical 	 or 	 operation. 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. operation	 acc 	 	 acc 	 or 	 [m] affected 	 fag(s)	 z or a,x 	 logical 	 or 	 immediate 	 data 	 to	 acc description	 data 	 in 	 the 	 accumulator 	 and 	 the 	 specifed 	 immediate 	 data 	 perform 	 a 	 bitwise 	 logical 	 or 	 	 	 operation. 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. operation	 acc 	 	 acc 	 or 	 x affected 	 fag(s)	 z orm a,[m] 	 logical 	 or 	 acc 	 to	 data 	 memory description	 data 	 in 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 accumulator 	 perform 	 a 	 bitwise 	 logical 	 or 	 	 	 operation. 	 the 	 result 	 is 	 stored 	in 	 the 	 data 	 memory. operation	 [m] 	 	 acc 	 or 	 [m] affected 	 fag(s)	 z ret 	 return 	 from 	 subroutine description	 the 	 program 	 counter 	 is 	 restored 	 from 	 the 	 stack. 	 program 	 execution 	 continues 	 at 	 the 	 restored 	 	 address. operation	 program 	 counter 	 	 stack affected 	 fag(s)	 none

 rev. 1.10 1?0 ?a? 0?? ?01? rev. 1.10 1?1 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ret a,x 	 return 	 from 	 subroutine 	 and 	 load 	 immediate 	 data 	 to	 acc description	 the 	 program 	 counter 	 is 	 restored 	 from 	 the 	 stack 	 and 	 the 	 accumulator 	 loaded 	 with 	 the 	 specifed 	 	 	 immediate 	 data. 	 program 	 execution 	 continues 	 at 	 the 	 restored 	 address. operation	 program 	 counter 	 	 stack 	 	 acc 	 	 x affected 	 fag(s)	 none reti 	 return 	 from 	 interrupt description	 the 	 program 	 counter 	 is 	 restored 	 from 	 the 	 stack 	 and 	 the 	 interrupts 	 are 	 re-enabled 	 by 	 setting 	 the 	 	 	 emi 	 bit. 	 emi 	 is 	 the 	 master 	 interrupt 	 global 	 enable 	 bit. 	 if 	 an 	 interrupt 	 was 	 pending 	 when 	 the 	 	 	 reti 	 instruction 	 is 	 executed, 	 the 	 pending 	 interrupt 	 routine 	 will 	 be 	 processed 	 before 	 returning 	 	 	 to 	 the 	 main 	 program. operation	 program 	 counter 	 	 stack 	 	 emi 	 	 1 affected 	 fag(s)	 none rl [m] 	 rotate 	 data 	 memory 	 left description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 are 	 rotated 	 left 	 by 	 1 	 bit 	 with 	 bit 	 7 	 rotated 	 into 	 bit 	 0. operation	 [m].(i+1) 	 	 [m].i; 	 (i 	 = 	 0~6) 	 	 [m].0 	 	 [m].7 affected 	 fag(s)	 none rla [m] rotate 	 data 	 memory 	 left 	 with 	 result 	in 	 acc description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 are 	 rotated 	 left 	 by 	 1 	 bit 	 with 	 bit 	 7 	 rotated 	 into 	 bit 	 0. 	 	 	 the 	 rotated 	 result 	 is 	 stored 	 in 	 the 	 accumulator 	 and 	 the 	 contents 	 of 	 the 	 data 	 memory 	 remain 	 	 unchanged. operation	 acc.(i+1) 	 	 [m].i; 	 (i 	 = 	 0~6) 	 	 acc.0 	 	 [m].7 affected 	 fag(s)	 none rlc [m] rotate 	 data 	 memory 	 left 	 through 	 carry description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 carry 	 fag 	 are 	 rotated 	 left 	 by 	 1 	 bit. 	 bit 	 7 	 	 replaces 	 the 	 carry 	 bit 	 and 	 the 	 original 	 carry 	 fag 	 is 	 rotated 	 into 	 bit 	 0. operation	 [m].(i+1) 	 	 [m].i; 	 (i 	 = 	 0~6) 	 	 [m].0 	 	c 	 	 c 	 	 [m].7 affected 	 fag(s)	 c rlca [m] 	 rotate 	 data 	 memory 	 left 	 through 	 carry 	 with 	 result 	in 	 acc description	 data 	 in 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 carry 	 fag 	 are 	 rotated 	 left 	 by 	 1 	 bit. 	 bit 	 7 	 replaces 	 the 	 	 	 carry 	 bit 	 and 	 the 	 original 	 carry 	 fag 	 is 	 rotated 	 into 	 the 	 bit 	 0. 	 the 	 rotated 	 result 	 is 	 stored 	 in 	 the 	 	 accumulator 	 and 	 the 	 contents 	 of 	 the 	 data 	 memory 	 remain 	 unchanged. operation	 acc.(i+1) 	 	 [m].i; 	 (i 	 = 	 0~6) 	 	 acc.0 	 	c 	 	 c 	 	 [m].7 affected 	 fag(s)	 c rr [m] rotate 	 data 	 memory 	 right description	 the 	 contents	 of 	 the 	 specifed 	 data 	 memory 	 are 	 rotated 	 right 	 by 	 1 	 bit 	 with 	 bit 	0	 rotated 	 into 	 bit 	 7. operation	 [m].i 	 	 [m].(i+1); 	 (i 	 = 	 0~6) 	 	 [m].7 	 	 [m].0 affected 	 fag(s)	 none

 rev. 1.10 1?? ?a? 0?? ?01? rev. 1.10 1?3 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu rra [m] rotate 	 data 	 memory 	 right 	 with	 result 	 in 	 acc description	 data 	 in 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 carry 	 fag 	 are 	 rotated 	 right 	 by 	 1 	 bit 	 with 	 bit 	 0 	 	 rotated 	 into 	 bit 	 7. 	 the 	 rotated 	 result 	 is 	 stored 	 in 	 the 	 accumulator 	 and 	 the 	 contents 	 of 	 the 	 	 data 	 memory 	 remain 	 unchanged. operation	 acc.i 	 	 [m].(i+1); 	 (i 	 = 	 0~6) 	 	 acc.7 	 	 [m].0 affected 	 fag(s)	 none rrc [m] rotate 	 data 	 memory 	 right 	 through 	 carry description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 carry 	 fag 	 are 	 rotated 	 right 	 by 	 1 	 bit. 	 bit 	 0 	 	 replaces 	 the 	 carry 	 bit 	 and 	 the 	 original 	 carry 	 fag 	 is 	 rotated 	 into 	 bit 	 7. operation	 [m].i 	 	 [m].(i+1); 	 (i 	 = 	 0~6) 	 	 [m].7 	 	 c 	 	 c 	 	 [m].0 affected 	 fag(s)	 c rrca [m] 	 rotate 	 data 	 memory 	 right 	 through 	 carry 	 with	 result 	 in 	 acc description	 data 	 in 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 carry 	 fag 	 are 	 rotated 	 right 	 by 	 1 	 bit. 	 bit 	 0 	 replaces 	 	 	 the 	 carry 	 bit 	 and 	 the 	 original 	 carry 	 fag 	 is 	 rotated 	 into 	 bit 	 7. 	 the 	 rotated 	 result 	 is 	 stored 	 in 	 the 	 	 	 accumulator 	 and 	 the 	 contents 	 of 	 the 	 data 	 memory 	 remain 	 unchanged. operation	 acc.i 	 	 [m].(i+1); 	 (i 	 = 	 0~6) 	 	 acc.7 	 	 c 	 	 c 	 	 [m].0 affected 	 fag(s)	 c sbc a,[m] 	 subtract 	 data 	 memory 	 from 	 acc 	 with 	 carry description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 complement 	 of 	 the 	 carry 	 fag 	 are 	 	 subtracted 	 from 	 the 	 accumulator. 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. 	 note 	 that 	 if 	 the 	 	 	 result 	 of 	 subtraction 	 is 	 negative, 	 the 	 c 	 fag 	 will 	 be 	 cleared 	 to 	 0, 	 otherwise 	 if 	 the 	 result 	 is 	 	 positive 	 or 	 zero, 	 the 	 c 	 fag 	 will 	 be 	 set 	 to	 1. operation	 acc 	 	 acc 	 ? 	 [m] 	 ? 		 c affected 	 fag(s)	 ov, 	 z, 	 ac, 	 c sbcm a,[m] 	 subtract 	 data 	 memory 	 from 	 acc 	 with 	 carry 	 and 	 result 	 in 	 data 	 memory description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 complement 	 of 	 the 	 carry 	 fag 	 are 	 	 	 subtracted 	 from 	 the 	 accumulator. 	 the 	 result 	 is 	 stored 	in 	 the 	 data 	 memory. 	 note 	 that 	 if 	 the 	 	 	 result 	 of 	 subtraction 	 is 	 negative, 	 the 	 c 	 fag 	 will 	 be 	 cleared 	 to 	 0, 	 otherwise 	 if 	 the 	 result 	 is 	 	 	 positive 	 or 	 zero, 	 the 	 c 	 fag 	 will 	 be 	 set 	 to	 1. operation	 [m] 	 	 acc 	 ? 	 [m] 	 ? 	 c affected 	 fag(s)	 ov, 	 z, 	 ac, 	 c sdz [m] skip 	 if 	 decrement 	 data 	 memory 	 is 	0 description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 are 	 frst 	 decremented 	 by 	 1. 	 if 	 the 	 result 	 is 	 0 	 the 	 	 	 following 	 instruction 	 is 	 skipped. 	 as 	 this 	 requires 	 the 	 insertion 	 of 	 a 	 dummy 	 instruction 	 while 	 	 	 the 	 next 	 instruction 	 is 	 fetched, 	 it 	 is 	 a 	 two 	 cycle 	 instruction. 	 if 	 the 	 result 	 is 	 not 	 0 	 the 	 program 	 	 	 proceeds 	 with 	 the 	 following 	 instruction. operation	 [m] 	 	 [m] 	 ? 	 1 	 	 skip 	 if 	 [m] 	 = 	 0 affected 	 fag(s)	 none

 rev. 1.10 1?? ?a? 0?? ?01? rev. 1.10 1?3 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu sdza [m] 	 skip 	 if 	 decrement 	 data 	 memory 	 is 	 zero 	 with 	 result 	 in 	 acc description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 are 	 frst 	 decremented 	 by 	 1. 	 if 	 the 	 result 	 is 	 0, 	 the 	 	 	 following 	 instruction 	 is 	 skipped. 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator 	 but 	 the 	 specifed 	 	 	 data 	 memory 	 contents 	 remain 	 unchanged. 	 as 	 this 	 requires 	 the 	 insertion 	 of 	 a 	 dummy 	 	 instruction 	 while 	 the 	 next 	 instruction 	 is 	 fetched, 	 it 	 is 	 a 	 two 	 cycle 	 instruction. 	 if 	 the 	 result 	 is 	 not 	 0, 	 	 	 the 	 program 	 proceeds 	 with 	 the 	 following 	 instruction. operation	 acc 	 	 [m] 	 ? 	 1 	 	 skip 	 if 	 acc 	 = 	 0 affected 	 fag(s)	 none set [m] 	 set 	 data 	 memory description	 each 	 bit 	 of 	 the 	 specifed 	 data 	 memory 	 is 	 set 	 to 	 1. operation	 [m] 	 	 ffh affected 	 fag(s)	 none set [m].i set 	 bit 	 of 	 data 	 memory description	 bit 	 i 	 of 	 the 	 specifed 	 data 	 memory 	 is 	 set 	 to 	 1. operation	 [m].i 	 	 1 affected 	 fag(s)	 none siz [m] skip 	 if 	 increment 	 data 	 memory 	 is 	 0 description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 are 	 frst 	 incremented 	 by 	 1. 	 if 	 the 	 result 	 is 	 0, 	 the 	 	 following 	 instruction 	 is 	 skipped. 	 as 	 this 	 requires 	 the 	 insertion 	 of 	 a 	 dummy 	 instruction 	 while 	 	 	 the 	 next 	 instruction 	 is 	 fetched, 	 it 	 is 	 a 	 two 	 cycle 	 instruction. 	 if 	 the 	 result 	 is 	 not 	 0 	 the 	 program 	 	 proceeds 	 with 	 the 	 following 	 instruction. operation	 [m] 	 	 [m] 	 + 	 1 	 	 skip 	 if 	 [m] 	 = 	 0 	 affected 	 fag(s)	 none siza [m] skip 	 if 	 increment 	 data 	 memory 	 is 	 zero 	 with 	 result 	in 	 acc description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 are 	 frst 	 incremented 	 by 	 1. 	 if 	 the 	 result 	 is 	 0, 	 the 	 	 	 following 	 instruction 	 is 	 skipped. 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator 	 but 	 the 	 specifed 	 	 data 	 memory 	 contents 	 remain 	 unchanged. 	 as 	 this 	 requires 	 the 	 insertion 	 of 	 a 	 dummy 	 	 instruction 	 while 	 the 	 next 	 instruction 	 is 	 fetched, 	 it 	 is 	 a 	 two 	 cycle 	 instruction. 	 if 	 the 	 result 	 is 	 not 	 	 0 	 the 	 program 	 proceeds 	 with 	 the 	 following 	 instruction. operation	 acc 	 	 [m] 	 + 	 1 	 	 skip 	 if 	 acc 	 = 	 0 affected 	 fag(s)	 none snz [m].i skip 	 if 	 bit 	 i 	 of 	 data 	 memory 	 is 	 not 	0 description	 if 	 bit 	i 	 of 	 the 	 specifed 	 data 	 memory 	 is 	 not 	 0, 	 the 	 following 	 instruction 	 is 	 skipped. 	 as 	 this 	 	 requires 	 the 	 insertion 	 of 	 a 	 dummy 	 instruction 	 while 	 the 	 next 	 instruction 	 is 	 fetched, 	 it 	 is 	 a 	 two 	 	 	 cycle 	 instruction. 	 if 	 the 	 result 	 is 	 0 	 the 	 program 	 proceeds 	 with 	 the 	 following 	 instruction. operation	 skip 	 if 	 [m].i 	 	0 affected 	 fag(s)	 none sub a,[m] 	 subtract 	 data 	 memory 	 from 	 acc description	 the 	 specifed 	 data 	 memory 	 is 	 subtracted 	 from 	 the 	 contents 	 of 	 the 	 accumulator. 	 the 	 result 	 is 	 	 	 stored 	in 	 the 	 accumulator. 	 note 	 that 	 if 	 the 	 result 	 of 	 subtraction 	 is 	 negative, 	 the 	 c 	 fag 	 will 	 be 	 	 	 cleared 	 to	 0, 	 otherwise 	 if 	 the 	 result 	 is 	 positive 	 or 	 zero, 	 the 	 c 	 fag 	 will 	 be 	 set 	 to	 1. operation	 acc 	 	 acc 	 ? 	 [m] affected 	 fag(s)	 ov, 	 z, 	 ac, 	 c

 rev. 1.10 1?4 ?a? 0?? ?01? rev. 1.10 1?5 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu subm a,[m] 	 subtract 	 data 	 memory 	 from 	 acc 	 with 	 result 	 in 	 data 	 memory description	 the 	 specifed 	 data 	 memory 	 is 	 subtracted 	 from 	 the 	 contents 	 of 	 the 	 accumulator. 	 the 	 result 	 is 	 	 	 stored 	in 	 the 	 data 	 memory. 	 note 	 that 	 if 	 the 	 result 	 of 	 subtraction 	 is 	 negative, 	 the 	 c 	 fag 	 will 	 be 	 	 	 cleared 	 to	 0, 	 otherwise 	 if 	 the 	 result 	 is 	 positive 	 or 	 zero, 	 the 	 c 	 fag 	 will 	 be 	 set 	 to	 1. operation	 [m] 	 	 acc 	 ? 	 [m] affected 	 fag(s)	 ov, 	 z, 	 ac, 	 c sub a,x subtract 	 immediate 	 data 	 from 	 acc description	 the 	 immediate 	 data 	 specifed 	 by 	 the 	 code 	 is 	 subtracted 	 from 	 the 	 contents 	 of 	 the 	 accumulator. 	 	 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. 	 note 	 that 	 if 	 the 	 result 	 of 	 subtraction 	 is 	 negative, 	 the 	 c 	 	 	 fag 	 will 	 be 	 cleared 	 to	 0, 	 otherwise 	 if 	 the 	 result 	 is 	 positive 	 or 	 zero, 	 the 	 c 	 fag 	 will 	 be 	 set 	 to	 1. operation	 acc 	 	 acc 	 ? 	 x affected 	 fag(s)	 ov, 	 z, 	 ac, 	 c swap [m] swap 	 nibbles 	 of 	 data 	 memory description	 the 	 low-order 	 and 	 high-order 	 nibbles 	 of 	 the 	 specifed 	 data 	 memory 	 are 	 interchanged. operation	 [m].3~[m].0 	 ? 	 [m].7 	 ~ 	 [m].4 affected 	 fag(s)	 none swapa [m] 	 swap 	 nibbles 	 of 	 data 	 memory 	 with 	 result 	 in 	 acc description	 the 	 low-order 	 and 	 high-order 	 nibbles 	 of 	 the 	 specifed 	 data 	 memory 	 are 	 interchanged. 	 the 	 	 	 result 	 is 	 stored 	 in 	 the 	 accumulator. 	 the 	 contents 	 of 	 the 	 data 	 memory 	 remain 	 unchanged. operation	 acc.3 	 ~ 	 acc.0 	 	 [m].7 	 ~ 	 [m].4 	 	 acc.7 	 ~ 	 acc.4 	 	 [m].3 	 ~ 	 [m].0 affected 	 fag(s)	 none sz [m] skip 	 if 	 data 	 memory 	 is 	0 description	 if 	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 is 	 0, 	 the 	 following 	 instruction 	 is 	 skipped. 	 as 	 this 	 	 	 requires 	 the 	 insertion 	 of 	 a 	 dummy 	 instruction 	 while 	 the 	 next 	 instruction 	 is 	 fetched, 	 it 	 is 	 a 	 two 	 	 	 cycle 	 instruction. 	 if 	 the 	 result 	 is 	 not 	 0 	 the 	 program 	 proceeds 	 with 	 the 	 following 	 instruction. operation	 skip 	 if 	 [m] 	 = 	0 affected 	 fag(s)	 none sza [m] skip 	 if 	 data 	 memory 	 is 	0	 with 	 data 	 movement 	 to	 acc description	 the 	 contents 	 of 	 the 	 specifed 	 data 	 memory 	 are 	 copied 	 to	 the 	 accumulator. 	 if 	 the 	 value 	 is 	 zero, 	 	 	 the 	 following 	 instruction 	 is 	 skipped. 	 as 	 this 	 requires 	 the 	 insertion 	 of 	 a 	 dummy 	 instruction 	 	 	 while 	 the 	 next 	 instruction 	 is 	 fetched, 	 it 	 is 	 a 	 two 	 cycle 	 instruction. 	 if 	 the 	 result 	 is 	 not 	 0 	 the 	 	 	 program 	 proceeds 	 with 	 the 	 following 	 instruction. operation	 acc 	 	 [m] 	 	 skip 	 if 	 [m] 	 = 	 0 affected 	 fag(s)	 none sz [m].i skip 	 if 	 bit 	 i 	 of 	 data 	 memory 	 is 	0 description	 if 	 bit 	i 	 of 	 the 	 specifed 	 data 	 memory 	 is 	 0, 	 the 	 following 	 instruction 	 is 	 skipped. 	 as 	 this 	 requires 	 	 the 	 insertion 	 of 	 a 	 dummy 	 instruction 	 while 	 the 	 next 	 instruction 	 is 	 fetched, 	 it 	 is 	 a 	 two 	 cycle 	 	 instruction. 	 if 	 the 	 result 	 is 	 not 	 0, 	 the 	 program 	 proceeds 	 with 	 the 	 following 	 instruction. operation	 skip 	 if 	 [m].i 	 = 	0 affected 	 fag(s)	 none

 rev. 1.10 1?4 ?a? 0?? ?01? rev. 1.10 1?5 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu tabrd [m] 	 read 	 table 	 to	 tblh 	 and 	 data 	 memory description	 the 	 low 	 byte 	 of 	 the 	 program 	 code 	 addressed 	 by 	 the 	 table 	 pointer 	 (tblp/tbhp) 	 is 	 	 	 moved 	 to 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 high 	 byte 	 moved 	 to 	 tblh. operation	 [m] 	 	 program 	 code 	 (low 	 byte) 	 	 tblh 	 	 program 	 code 	 (high 	 byte) affected 	 fag(s)	 none tabrdl [m] read 	 table 	 (last 	 page) 	 to 	 tblh 	 and 	 data 	 memory description	 the 	 low 	 byte 	 of 	 the 	 program 	 code 	 (last 	 page) 	 addressed 	 by 	 the 	 table 	 pointer 	 (tblp/tbhp) 	 is 	 	 	 moved 	 to 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 high 	 byte 	 moved 	 to 	 tblh. operation	 [m] 	 	 program 	 code 	 (low 	 byte) 	 	 tblh 	 	 program 	 code 	 (high 	 byte) affected 	 fag(s)	 none xor a,[m] 	 logical 	 xor 	 data 	 memory 	 to	 acc description	 data 	 in 	 the 	 accumulator 	 and 	 the 	 specifed 	 data 	 memory 	 perform 	 a 	 bitwise 	 logical 	 xor 	 	 	 operation. 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. operation	 acc 	 	 acc 	 xor 	 [m] affected 	 fag(s)	 z xorm a,[m] 	 logical 	 xor 	 acc 	 to	 data 	 memory description	 data 	 in 	 the 	 specifed 	 data 	 memory 	 and 	 the 	 accumulator 	 perform 	 a 	 bitwise 	 logical 	 xor 	 	 	 operation. 	 the 	 result 	 is 	 stored 	in 	 the 	 data 	 memory. operation	 [m] 	 	 acc 	 xor 	 [m] affected 	 fag(s)	 z xor a,x logical 	 xor 	 immediate 	 data 	 to	 acc description	 data 	 in 	 the 	 accumulator 	 and 	 the 	 specifed 	 immediate 	 data 	 perform 	 a 	 bitwise 	 logical 	 xor 	 	 	 operation. 	 the 	 result 	 is 	 stored 	in 	 the 	 accumulator. operation	 acc 	 	 acc 	 xor 	 x affected 	 fag(s)	 z

 rev. 1.10 1?6 ?a? 0?? ?01? rev. 1.10 1?7 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu package information note	 that	 the	 package	 information	 provided	 here	 is	 for	 consultation	 purposes	 only. 	 as	 this 	 information	 may	 be	 updated	 at	 regular	 intervals	 users	 are	 reminded	 to	 consult	 the	 holtek	 website 	 (http://www.holtek.com.tw/english/literature/package.pdf) 	 for	 the	 latest	 version	 of	 the	 package 	 information. 28-pin skdip (300mil) outline dimensions symbol dimensions in inch min. nom. max. a 1.375 D 1.395 b 0.?78 D 0.?98 c 0.1?5 D 0.135 d 0.1?5 D 0.145 e 0.016 D 0.0?0 f 0.050 D 0.070 g D 0.100 D h 0.?95 D 0.315 i D 0.375 D symbol dimensions in mm min. nom. max. a 34.93 D 35.43 b 7.06 D 7.57 c 3.18 D 3.43 d 3.18 D 3.68 e 0.41 D 0.51 f 1.?7 D 1.78 g D ?.54 D h 7.49 D 8.00 i D 9.53 D

 rev. 1.10 1?6 ?a? 0?? ?01? rev. 1.10 1?7 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu 28-pin sop (300mil) outline dimensions ? ms-013 symbol dimensions in inch min. nom. max. a 0.393 D 0.419 b 0.?56 D 0.300 c 0.01? D 0.0?0 c 0.697 D 0.713 d D D 0.104 e D 0.050 D f 0.004 D 0.01? g 0.016 D 0.050 h 0.008 D 0.013 0 D 8 symbol dimensions in mm min. nom. max. a 9.98 D 10.64 b 6.50 D 7.6? c 0.30 D 0.51 c 17.70 D 18.11 d D D ?.64 e D 1.?7 D f 0.10 D 0.30 g 0.41 D 1.?7 h 0.?0 D 0.33 0 D 8

 rev. 1.10 1?8 ?a? 0?? ?01? rev. 1.10 1?9 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu 28-pin ssop (150mil) outline dimensions symbol dimensions in inch min. nom. max. a 0.??8 D 0.?44 b 0.150 D 0.157 c 0.008 D 0.01? c 0.386 D 0.394 d 0.054 D 0.060 e D 0.0?5 D f 0.004 D 0.010 g 0.0?? D 0.0?8 h 0.007 D 0.010 0 D 8 symbol dimensions in mm min. nom. max. a 5.79 D 6.?0 b 3.81 D 3.99 c 0.?0 D 0.30 c 9.80 D 10.01 d 1.37 D 1.5? e D 0.64 D f 0.10 D 0.?5 g 0.56 D 0.71 h 0.18 D 0.?5 0 D 8

 rev. 1.10 1?8 ?a? 0?? ?01? rev. 1.10 1?9 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu 44-pin qfp (10mmx10mm) outline dimensions symbol dimensions in inch min. nom. max. a 0.51? D 0.5?8 b 0.390 D 0.398 c 0.51? D 0.5?8 d 0.390 D 0.398 e D 0.031 D f D 0.01? D g 0.075 D 0.087 h D D 0.106 i 0.010 D 0.0?0 j 0.0?9 D 0.037 k 0.004 D 0.008 l D 0.004 D 0 D 7 symbol dimensions in mm min. nom. max. a 13.00 D 13.40 b 9.90 D 10.10 c 13.00 D 13.40 d 9.90 D 10.10 e D 0.80 D f D 0.30 D g 1.90 D ?.?0 h D D ?.70 i 0.?5 D 0.50 j 0.73 D 0.93 k 0.10 D 0.?0 l D 0.10 D 0 D 7

 rev. 1.10 130 ?a? 0?? ?01? rev. 1.10 131 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu 52-pin qfp (14mmx14mm) outline dimensions
 symbol dimensions in inch min. nom. max. a 0.681 D 0.689 b 0.547 D 0.555 c 0.681 D 0.689 d 0.547 D 0.555 e D 0.039 D f D 0.016 D g 0.098 D 0.1?? h D D 0.134 i D 0.004 D j 0.0?9 D 0.041 k 0.004 D 0.008 0 D 7 symbol dimensions in mm min. nom. max. a 17.30 D 17.50 b 13.90 D 14.10 c 17.30 D 17.50 d 13.90 D 14.10 e D 1.00 D f D 0.40 D g ?.50 D 3.10 h D D 3.40 i D 0.10 D j 0.73 D 1.03 k 0.10 D 0.?0 0 D 7

 rev. 1.10 130 ?a? 0?? ?01? rev. 1.10 131 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu 64-pin lqfp (7mmx7mm) outline dimensions
 symbol dimensions in inch min. nom. max. a 0.350 D 0.358 b 0.?7? D 0.?80 c 0.350 D 0.358 d 0.?7? D 0.?80 e D 0.016 D f 0.005 D 0.009 g 0.053 D 0.057 h D D 0.063 i 0.00? D 0.006 j 0.018 D 0.030 k 0.004 D 0.008 0 D 7 symbol dimensions in mm min. nom. max. a 8.90 D 9.10 b 6.90 D 7.10 c 8.90 D 9.10 d 6.90 D 7.10 e D 0.40 D f 0.13 D 0.?3 g 1.35 D 1.45 h D D 1.60 i 0.05 D 0.15 j 0.45 D 0.75 k 0.09 D 0.?0 0 D 7

 rev. 1.10 13? ?a? 0?? ?01? rev. 1.10 133 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu reel dimensions product tape and reel specifications reel dimensions sop 28w (300mil) symbol description dimensions in mm a reel outer diameter 330.01.0 b reel inner diameter 100.01.5 c spindle hole diameter 13.0 +0.5/-0.2 d key slit width 2.00.5 t1 space between flange 24.8 +0.3/-0.2 t2 reel thickness 30.20.2 package information 2 april 1, 2010 ? sop 28w (300mil) symbol description dimensions in mm a reel outer diameter 330.01.0 b reel inner diameter 100.01.5 c spindle hole diameter 13.0 +0.5/-0.? d ke? slit width ?.00.5 t1 space between flange ?4.8 +0.3/-0.? t? reel thickness 30.?0.? ? ssop 28s (150mil) symbol description dimensions in mm a reel outer diameter 330.01.0 b reel inner diameter 100.01.5 c spindle hole diameter 13.0 +0.5/-0.? d ke? slit width ?.00.5 t1 space between flange 16.8 +0.3/-0.? t? reel thickness ??.?0.?

 rev. 1.10 13? ?a? 0?? ?01? rev. 1.10 133 ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu carrier tape dimensions carrier tape dimensions sop 28w (300mil) symbol description dimensions in mm w carrier tape width 24.00.3 p cavity pitch 12.00.1 e perforation position 1.750.10 f cavity to perforation (width direction) 11.50.1 d perforation diameter 1.5 +0.1/-0.0 d1 cavity hole diameter 1.50 +0.25/-0.00 p0 perforation pitch 4.00.1 p1 cavity to perforation (length direction) 2.00.1 a0 cavity length 10.850.10 b0 cavity width 18.340.10 k0 cavity depth 2.970.10 t carrier tape thickness 0.350.01 c cover tape width 21.30.1 package information 3 april 1, 2010

 	 	
 	 � ? sop 28w (300mil) symbol description dimensions in mm w carrier tape width ?4.00.3 p cavit? pitch 1?.00.1 e perforation position 1.750.10 f cavit? to perforation (width direction) 11.50.1 d perforation diameter 1.5 +0.1/-0.0 d1 cavit? hole diameter 1.50 +0.?5/-0.00 p0 perforation pitch 4.00.1 p1 cavit? to perforation (length direction) ?.00.1 a0 cavit? length 10.850.10 b0 cavit? width 18.340.10 k0 cavit? depth ?.970.10 t carrier tape thickness 0.350.01 c cover tape width ?1.30.1 ? ssop 28s (150mil) symbol description dimensions in mm w carrier tape width 16.00.3 p cavit? pitch 8.00.1 e perforation position 1.750.1 f cavit? to perforation (width direction) 7.50.1 d perforation diameter 1.55 +0.10/-0.00 d1 cavit? hole diameter 1.50 +0.?5/-0.00 p0 perforation pitch 4.00.1 p1 cavit? to perforation (length direction) ?.00.1 a0 cavit? length 6.50.1 b0 cavit? width 10.30.1 k0 cavit? depth ?.10.1 t carrier tape thickness 0.300.05 c cover tape width 13.30.1

 rev. 1.10 134 ?a? 0?? ?01? rev. 1.10 pb ?a? 0?? ?01? ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu ht46r068b/ht46r069b enhanced a/d type 8-bit otp mcu holtek semiconductor inc. (headquarters) no.3? creation rd. ii? science park? hsinchu? taiwan tel: 886-3-563-1999 fax: 886-3-563-1189 http://www.holtek.com.tw holtek semiconductor inc. (taipei sales offce) 4f-?? no. 3-?? yuanqu st.? nankang software park? taipei 115? taiwan tel: 886- ?-?655-7070 fax: 886-?-?655-7373 fax: 886-?-?655-7383 (international sales hotline) holtek semiconductor inc. (shenzhen sales offce) 5f ? unit a? productivit? building? no.5 gaoxin ? ?nd road? nanshan district? shenzhen? china 518057 tel: 86-755-8616-9908 ? 86-755-8616-9308 fax: 86-755-8616-97?? holtek semiconductor (usa), inc. (north america sales offce) 467?9 fremont blvd.? fremont? ca 94538? usa tel: 1-510- ?5?-9880 fax: 1-510-?5?-9885 http://www.holtek.com cop?right ? ?01? b? holtek se? iconductor inc. the information appearing in this data sheet is believed to be accurate at the time of publication. however ? holtek assumes no responsibilit ? arising from the use of the specifications described. the applications mentioned herein are used solel? for the purpose of illustration and holtek makes no warrant ? or representation that such applications will be suitable without further modification ? nor recommends the use of its products for application that ma ? present a risk to human life due to malfunction or otherwise. holtek's products are not authorized for use as critical components in life support devices or systems. holtek reserves the right to alter its products without prior notifcation. for the most up-to-date information? please visit our web site at http://www.holtek.com.tw.

		

		
			

			▲Up To
				Search▲

		
	
Price & Availability of HT46R069B12
	[image:]
	
			

	

	
			
		

				
	
				All Rights Reserved ©
				IC-ON-LINE 2003 - 2022

	

	
			[Add Bookmark] [Contact
				Us] [Link exchange] [Privacy policy]
	
				Mirror Sites : [www.datasheet.hk]
				[www.maxim4u.com] [www.ic-on-line.cn]
				[www.ic-on-line.com] [www.ic-on-line.net]
				[www.alldatasheet.com.cn]
				[www.gdcy.com]
				[www.gdcy.net]

	

	

.
.
.
.
.

		 	We use cookies to deliver the best possible
	web experience and assist with our advertising efforts. By continuing to use
	this site, you consent to the use of cookies. For more information on
	cookies, please take a look at our
	Privacy Policy.	
	X

